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The synchronization problem

Consider N systems or agents

Each system in Rn satisfies the dynamics ẋi = f (xi ) + g(xi )ui

I Same drift vector field f , and same control vector field g

I But not the same controls in Rp

⇒ So they define different dynamics in the same space (Rn).



The synchronization problem

Synchronization problem : Find state feedback control law ui such that each
agent converges to each other.

With control constraints :

1. the control of agent i can use only the knowledge of its state xi and state
of some other agents depending on a undirected communication graph.

⇒

u1 = φ1(x1, x2, x3)
u2 = φ2(x1, x2, x3)
u3 = φ3(x1, x2, x3, x4)
u4 = φ4(x3, x4, x5)
u5 = φ5(x4, x5)

2. all controls ui are not used when each agent has found an agreement.

φi (z , . . . , z) = 0 , i = 1, . . .N, ∀z ∈ Rn

⇒ stabilizing all agents to a steady state is not an appropriate solution.



The synchronization problem

The synchronization manifold D

D = {(x1, . . . , xN) ∈ RNn | x1 = x2 · · · = xN}.

⇒ Synchronizing means ”make D asymptotically stable”.

Let X (x , t) denotes the solutions initiated from x = (x1, . . . , xN) defined for all
t in [0,T (x)).

Uniform Exponential Stability of a set

I Local : ∃(r , k, λ) positive such that ∀x satisfying |x |D < r ,

|X (x , t)|D ≤ k exp(−λt) |x |D , t ∈ [0,T (x))

where | · |D is the Euclidean distance to the set D.

I Global : r = +∞.



The local synchronization problem

Our synchronization problem formulation

Construct ui = φi (x), i = 1 . . . ,N such that

1. For all non-communicating pair (i , j) with i 6= j

∂φi

∂xj
(x) =

∂φj

∂xi
(x) = 0

2. (φi )i∈[1,N] is zero on D
3. The manifold D of the closed-loop system

ẋi = f (xi ) + g(xi )φi (x), i = 1, . . . ,N

is locally uniformly exponentially stable.

When r =∞, it is called the global exponential synchronization problem.



In the following:

1. Some necessary conditions for synchronization

2. Some sufficient conditions for local synchronization

3. Design based on these sufficient conditions

4. Global synchronization

5. Conclusion



Necessary Conditions

First case considered

I All agents can communicate with each other

I The control law preserves some symmetry of the communication
topology : Invariance by permutation.

φ1(x2, x1, x3, x4, x5) = φ2(x1, x2, x3, x4, x5)

Theorem (VA-BJ-LP 2016)

Assume some bounds on derivative of f , g , φ and that u = φ(x) solves the local
uniform exponential synchronization. Then the following two properties hold

1. Infinitesimal Stabilizability (IS)

2. Control Matrix Function (CMF)



Necessary conditions

Infinitesimal stabilizability (IS)

The couple (f , g) is such that for the linearized controlled system

˙̃z =
∂f

∂z
(z)z̃ + g(z)ũ , ż = f (z) , (z̃ , z) ∈ Rn × Rn ,

{(z , z̃) ∈ Rn × Rn, z̃ = 0} is stabilizable by a (linear in z̃) state feedback.

⇒ For linear systems

ẋi = Axi + Bui , i = 1, . . .N

it is equivalent with stabilizability of the couple (A,B).



Necessary conditions

Control Matrix Function (CMF)

The couple (f , g) is such that for all Q > 0, there exist P : Rn → Rn×n such
that p Idn ≤ P(z) ≤ p Idn and

if z̃>P(z)g(z) = 0⇒ ∂z̃>P(z)z̃

∂z
f (z) + 2z̃>P(z)

∂f

∂z
(z)z̃︸ ︷︷ ︸

=

˙︷ ︷
z̃
>P(z )̃z along the linearized syst.

≤ −z̃>Qz̃

Picking V (z , z̃) = z̃>P(z)z̃ , this property is a CLF property which
characterizes the Infinitesimal stabilizability property for

˙̃z =
∂f

∂z
(z)z̃ + g(z)ũ , ż = f (z)



Sketch of the proof :

Let z = x1, ei = xi − x1, i = 2, . . .N, the system can be rewritten

ė = F (e, z) ż = G(e, z)

Exponential Synchronization
m

D := {(z , e) : e = 0} exponentially stable

How can we characterize transverse exponential stability ?



Sketch of the proof :

Back to the basis : Consider the (sufficiently smooth) system:

ė = F (e) , F (0) = 0 , e ∈ Rne

Basic Lyapunov Theorem

The following three properties are equivalent:

I Local exponential stability

I Global exponential stability of the linearized system

˙̃e =
∂F

∂e
(0)ẽ

I Algebraic Lyapunov matrix inequality

∀Q > 0 , ∃P > 0 , P ∂F

∂e
(0) +

∂F

∂e
(0)>P < −Q



Consider a (sufficiently smooth) (z , e)-system in the form:

ė = F (e, z) , ż = G(e, z) , e ∈ Rne , z ∈ Rnz

such that the manifold D := {(z , e) : e = 0} is invariant F (0, z) = 0, ∀z .

Transverse Lyapunov Theorem (VA-BJ-LP-2013)

Assuming some bounds on derivatives of F and G , the following three
properties are equivalent:

I Local uniform exponential stability of D := {(z , e) : e = 0}
I Global exponential stability of D̃ := {(z , ẽ) : ẽ = 0} along the

transversally linearized system

˙̃e =
∂F

∂e
(0, z)ẽ , ż = G(0, z)

I Algebraic Lyapunov matrix inequality for all Q there exists
p I ≤ P(z) ≤ p I such that

∂ẽ>P(z)ẽ

∂z
G(0, z) + 2ẽ>P(z)

∂F

∂e
(0, z)ẽ ≤ −ẽ>Qẽ



Sketch of the proof

I The synchronized system in closed loop is

ėi = Fi (e, z) = f (ei + z)− f (z)

+ g(ei + z)φi (z , e1 + z , . . . , eN + z)

− g(z)φ1(z , e1 + z , . . . , eN + z)

I With the Trans. Lyap. Theo., D̃ := {(z , ẽ) : ẽ = 0} is exponentially stable
along

˙̃e =
∂F

∂e
(0, z)ẽ , ż = G(0, z)

I With the invariance by permutation assumption:

˙̃e i =
∂F

∂e
(0, z)ẽ =

∂f

∂x
(z)ẽi + g(z)

[
∂φi

∂xi
(z , . . . , z)− ∂φ1

∂xi
(z , . . . , z)

]
ẽi

⇒ Infinitesimal stabilizability and CMF hold



Necessary conditions

If we assume invariance by permutation, two necessary conditions

1. Infinitesimal Stabilizability (IS)

2. Control Matrix Function (CMF)

Is it still true when removing symmetry property and considering
communication constraints ?

⇒



Necessary conditions

Theorem (VA-BJ-ST-2017)

Assume some bounds on derivative of f , g , φ and that u = φ(x) solves the
local uniform exponential synchronization over a graph G. Then properties IS
and CMF hold.

Note that no invariance by permutation is now assumed.



In the following:

1. Some necessary conditions for synchronization

2. Some sufficient conditions for local synchronization

3. Design based on these sufficient conditions

4. Global synchronization

5. Conclusion



Sufficient conditions

Given a graph G we introduce the Laplacian matrix in RN×N :

Lii =
∑
j 6=i

Lij , Lij = −1 if (i , j) ∈ E

⇒ L =


2 −1 −1 0 0
−1 2 −1 0 0
−1 −1 3 −1 0
0 0 −1 2 −1
0 0 0 −1 1





Sufficient condition

For linear system
ẋi = Axi + Bui , i = 1, . . .N

Stabilizability + Connectivity ⇒ Synchronization.

Theorem : Linear case (Scardovi-Sepulchre-2009)

If

I (A,B) is stabilizable. i.e. there exists K such that A + BK is stable.

I the graph G is connected with associated Laplacian matrix L = (Lij).

Then the control law

φi (x) =
N∑
j=1

LijKxj

solves the (global) exponential synchronization problem.



Sufficient condition

Control Matrix Function
Integrability

+ Connectivity ⇒ (local) Synchronization.

Theorem (VA-BJ-ST-2015)

Assume that ∃ a C 2 function P : Rn → Rn×n

I The CMF’ condition holds.

I ∃U : Rn → R, α : Rn → Rp such the integrability holds, i.e.

∂U

∂z
(z)> = P(z)g(z)α(z)

Then, given a connected graph G there exists ` such that

φi (x) = −`α(xi )
N∑
j=1

LijU(xj) , x ∈ Rnm

solves the local uniform exponential synchronization problem.



About the CMF’ condition

The CMF necessary condition was

if v>P(z)g(z) = 0⇒ ∂v>P(z)v

∂x
+ 2v>P(z)

∂f

∂z
(z)v ≤ −v>Qv

and the CMF’ sufficient condition is (forgetting the function α)

∂v>P(z)v

∂x
+ 2v>P(z)

∂f

∂z
(z)v − ρv>P(z)g(z)g(z)>P(z)v ≤ −v>Qv ,

In the linear context the first one becomes:

if v>PB = 0⇒ 2v>A>Pv ≤ −v>Qv

and the second one

PA + A>P − ρPBB>P ≤ −Q ,

I With Finsler’s Lemma we get equivalence in the linear context.

I If z is in a compact set, equivalence is also obtained in the nonlinear
context.



About the synchronizing control law

The control law is :

φi (x) = −`α(xi )
N∑
j=1

LijU(xj)

For all x = (z , . . . , z) in D

∂φ

∂x
(x) = −`α(z)

∂U

∂z
(z)⊗ L .

⇒ This is a direct extension of Scardovi-Sepulchre-2009.



Sketch of the proof

I The closed loop system is :

xi = f (xi )− `g(xi )α(xi )
N∑
j=1

LijU(xj) , i = 1, . . . ,N

I Let z = x1, ei = xi − x1, the system can be rewritten

ė = F (e, z) ż = G(e, z)

I We want ` such that D̃ := {(z , ẽ) : ẽ = 0} is exponentially stable along
the transversally linearized system

˙̃e =
∂F

∂ẽ
(0, z)ẽ , ż = G(0, z)

(Because of the Transverse exponential stability theorem VA-BJ-LP-2013)



Sketch of the proof

I With the Integrability Condition

∂F

∂e
(0, z) = IdN−1⊗

∂f

∂z
(z) + `A⊗

g(z)α(z)
∂U

∂x
(z)︸ ︷︷ ︸

(P(z)g(z)α(z))>


where A is a matrix which depends on L.

I If the graph is Connected, A is Hurwitz,

∃S > 0 , ν > 0 , SA + A>S ≤ −νS

I With CMF’, it yields with P(z) = S ⊗ P(z) and ` sufficiently large

∂ẽ>P(z)ẽ

∂z
G(0, z) + 2ẽ>P(z)

∂F

∂e
(0, z)ẽ ≤ −ẽ>Qẽ

⇒ e>P(z)e is a Lyapunov function ⇒ Local Synchronization



Sufficient conditions

Conclusion : Given vector fields f and g , to construct a synchronizing control
law, one needs to find a matrix function P

I which satisfies the CMF condition.

I which satisfies the integrability condition.

Question : Is is possible ?
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Design based on CMF and Integrability

Assume we have found a matrix function Pa(za) which satisfies the CMF and
integrability conditions for the za subsystem,

ża = fa(za) + ga(za)ua , za ∈ Rna

Question : is it possible to construct P that satisfies the CMF and integrability
conditions for the following Rna+1 system ?

ża = fa(za) + ga(za)zb, żb = fb(z) + gb(z)u , z = (za, zb) ∈ Rna+1

with 0 < g
b
≤ gb(z) ≤ gb

⇒ This is the context of the backstepping



Design based on CMF and Integrability

Killing controlled vector field assumption (KCV)

There exists a non-vanishing smooth function qa : Rna → R such that

dgaPa(za)

qa(za)
+ 2

Pa(za)

qa(za)

∂ga

∂za
(za)− 2Pa(za)

ga(za)

qa(za)2

∂qa

∂za
(za) = 0

With g̃a(za) = g(za)
qa(za)

, this assumption means

˙︷ ︷
z̃>a P(za)z̃a= 0

along the linearized system

˙̃za =
∂g̃a

∂za
(za)z̃a , ża = g̃a(za)



Design based on CMF and Integrability

Theorem (VA-BJ-ST-2016)

Assume that there exists Pa that satisfies the CMF, the Integrability and the
KCV conditions for za in Ca.
Then for all positive real number Mb, the overall system satisfies the CMF, the
Integrability and the KCV conditions in the compact set
Ca × [−Mb,Mb] ⊂ Rna+1 with the symmetric covariant tensor field Pb be given
by

Pb(z) =

[
Pa(za) + Sa(z)Sa(z)> Sa(z)qa(za)

Sa(z)>qa(za) qa(za)2

]
where

Sa(z) =
∂qa

∂za
(za)>zb + ηαa(za)Pa(za)ga(za)

and η is a positive real number.

We propagate the property !
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Global synchronization

First, consider two agents

ẋ1 = f (x1) + g(x1)u1 , ẋ2 = f (x2) + g(x2)u2

Assume that ∃ a C 2 function P : Rn → Rn×n

I The CMF condition holds.

I ∃U : Rn → R, α : Rn → Rp such the integrability Condition holds, i.e.

∂U

∂z
(z)> = P(z)g(z)α(z)

Can we get global synchronization ?

Yes, but e>P(z)e is not a good candidate Lyapunov function !



Global synchronization

P may be used to define a Riemanian metric on Rn.

A Lyapunov function for the system may be constructed:

I we can define the length of any piece-wise C 1 path γ : [s1, s2]→ Rn

between x1 and x2 in as :

L(γ)
∣∣∣s2

s1

=

∫ s2

s1

√
dγ

ds
(σ)>P(γ(σ))

dγ

ds
(σ) dσ

I By minimizing along all such path we get a function V (x1, x2).

I Also
0 <

√
p|x1 − x2| ≤ V (x1, x2) ≤

√
p|x1 − x2|



Global Synchronization

To get a result, we need one more assumption.

Totally geodesics level set of U

For all (z̃ , z) in S × Rn such that

∂U

∂x
(x)z̃ = 0, z̃>P(z)z̃ = 1 ,

any geodesic γ, with γ(0) = z and dγ
ds

(0) = z̃ satisfies

∂U

∂z
(γ(s))

dγ

ds
(s) = 0 , ∀s



Global Synchronization

In the case of two agents:

Theorem (VA-BJ-LP-2016)

Assume that ∃ a C 4 function P : Rn → Rn×n

I The CMF condition holds.

I ∃U : Rn → R, α : Rn → Rp such the integrability holds, i.e.

∂U

∂z
(z)> = P(z)g(z)α(z)

I The level set of U are totally geodesic (with respect to (Rn,P))

Then, there exists a function ` such that

φ1(x) = −`(x1, x2)α(x1) [U(x2)− U(x1)]

φ2(x) = −`(x1, x2)α(x2) [U(x1)− U(x2)]

solves the global uniform exponential synchronization problem.



Sketch of the proof

I Consider two agents with g constant

ẋ1 = f (x1) + gu1 , ẋ2 = f (x2) + gu2

I Assume that there exists P (constant) such that p Idn ≤ P ≤ p Idn and

if z̃>Pg = 0⇒ z̃>P
∂f

∂z
(z)z̃ ≤ −z̃>Qz̃ = CMF

I In this case the Integrability Condition is trivially satisfied

U(z) = g>Pz

I Let e = x2 − x1, z = x1, note that we have

e>Pė = e>P
[
f (z + e)− f (z)− `gg>Pe

]
=

∫ 1

0

e>
[

P
∂f

∂e
(z + se)− `Pgg>P

]
e ds



Global synchronization

Case with N agent in the Euclidean case

Theorem (VA-BJ-LP-2016)

1. Assume that g(z) = G and that ∃ a matrix P in Rn×n such that CMF
condition holds.

2. the graph is connected with Laplacian matrix L.

Then there exist ` and positive real numbers c1, . . . , cN such that

φi (x) = −` ci

N∑
j=1

LijG
>Pxj

solves the global uniform exponential synchronization problem.

Open question : What about the Riemannian case with N agent ?



Conclusion

In conclusion:

I We have formulized a synchronization problem.

I Assume some constraints on the control, infinitesimal stabilizability and its
Lyapunov characterization (CMF) are necessary condition.

I Adding an integrability property, these condition becomes sufficient.

I An iterative construction inspired from the backstepping can be
introduced.

I Global result is possible if
I there are only 2 agents + totally geodesic assumption.
I Constant control vector field + Euclidean stabilizability property

On going work:

I Construction of synchronizing controller for monotonic nonlinear systems.

Open questions:

I Global result for more then 2 agents in the Riemannian case.

I what about directed graphs ?
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Design based on CMF and Integrability

As an illustrative example, consider the case in which the vector fields f and g
are given by

f (z) =

−za1 + sin(za2) cos(za1) + za2

[2 + sin(za1)]zb
0

 ,

g(z) =

0
0
1

 .

This system may be rewritten with za = (za1, za2) as

ża = fa(za) + ga(za)zb , żb = u

with

fa(za) =

[
−za1 + sin(za2) cos(za1) + za2

0

]
,

ga(za) =

[
0

2 + sin(za1)

]



Design based on CMF and Integrability

Consider the matrix Pa given as

Pa =

(
2 1
1 2

)

I With
U(za) = za1 + 2za2 ,

The integrability condition is satisfied with αa = 1
2+sin(za1)

.

I We have

v>
∂U

∂za
(za) = 0⇔ v1 + 2v2 = 0

Moreover, we have[
−2 1

]
Pa
∂fa
∂za

(za)

[
−2
1

]
= −3

[
−2

∂fa1

∂za1
+
∂fa1

∂za2

]
= −3.

[−2(−1 + sin(za2) sin(za1))− cos(za1) cos(za2) + 1]

≤ −3

Hence the CMF condition is satisfied.



Design based on CMF and Integrability

I Finally the KCV condition is satisfied by taking qa(za) = 2 + sin(za1).

⇒ There exist positive real numbers ρb and η such that with

U(z) = η(za1 + 2za2) +
zb

2 + sin(za1)

and with α(z) = 2 + sin(za1), the control law

φi (x) = −`α(xi )
N∑
j=1

LijU(xj)

solve the local exponential synchronization problem for the N identical systems
that exchange information via any undirected communication graph G, which is
connected.
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