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Motivation

“Safety is a basic tenet to the [automotive] industry
now and will continue to be an ongoing major focus
for consumers and manufacturers alike.”
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Part I

Extended braking stiffness estimation
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Wheel dynamics

The longitudinal dynamics of the angular velocity ω of the wheel
is described by

where I is the inertia of the wheel, R is its effective rolling radius,
γb is the brake efficiency, Pb is the brake pressure, Fx is the
tyre force, Fz is the vertical load, µ(λ) is the tyre-road friction
coefficient, λ is the wheel slip, and vx is the speed of the vehicle.
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Wheel dynamics

The longitudinal dynamics of the angular velocity ω of the wheel
is described by
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where I is the inertia of the wheel, R is its effective rolling radius,
γb is the brake efficiency, Pb is the brake pressure, Fx is the
tyre force, Fz is the vertical load, µ(λ) is the tyre-road friction
coefficient, λ is the wheel slip, and vx is the speed of the vehicle.
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Tyre-road friction coefficient
Burckhardt’s tyre characteristic model is defined as

µ(λ) = c1(1− exp(−c2λ))− c3λ

where the constants ci depend on the road conditions.
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Figure: Typical tyre-road friction curve for different road surface conditions.
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Extended braking stiffness (XBS)
The XBS is defined as the slope of friction coefficient against
wheel slip at the operating point, i.e.

dµ(λ)

dλ
= c1c2 exp(−c2λ))− c3.
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Figure: Tyre-road friction and extended braking stiffness (XBS).
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State-of-the-art on XBS estimation

I [Sugai et al., 1999] Analysis of the frequency characteristics
of a resonance system composed of the vehicle body, the
wheel and the road surface.

I [Umeno, 2002] Instrumental variable method. Linearization
around a constant-velocity operating point.

I [Ono et al., 2003] Recursive least squares algorithm. The
XBS is (implicitly) assumed constant.

I [Villagra et al., 2011] Elementary diagnostic tools and
algebraic methods to distinguish one type of road from
another. The estimation results are accurate only within a
certain validity range.

I [Hoàng et al., 2013; 2014] Augmented-state observer.
Requires (some) knowledge about the road conditions.
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Wheel acceleration and XBS dynamics

Defining as state variables z1 = Rω̇ − v̇x and z2 = dµ(λ)
dλ , we

obtain

ż1 = − a

vx(t)
z1z2 − bu (1a)

ż2 = (cz2 + d)
1

vx(t)
z1 (1b)

where a = R2

I Fz, b = R
I γb are known constant parameters,

u = Ṗb, c = −c2, d = −c2c3 are unknown parameters that de-
pend on the road conditions, and vx is considered as a known
external variable.

The objective is to design an observer to estimate the (unmea-
surable) XBS z2 under unknown road conditions, using the avai-
lable information of the wheel acceleration offset z1.
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Change of coordinates

In order for the system to have a convenient structure that al-
lows us to exploit well-known tools available in the literature, we
propose the linear change of coordinates

w1 = z1

w2 = z2 +
c

a
z1

which transforms system (1) into

ẇ1 =
w1

vx(t)
(cw1 − aw2)− bu

ẇ2 = −bc
a
u+

w1

vx(t)
d
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Change of coordinates

or, equivalently,

ẇ(t) = A(t, y)w(t) +Bu(t) + Ψ(t, u, y)θ (2a)

y(t) = Cw(t) (2b)

with

A(t, y) =
w1

vx(t)

(
0 −a
0 0

)
, Ψ(t, u, y) =


w2

1

vx(t)
0

− b
a
u

w1

vx(t)


B =

(
−b
0

)
, C =

(
1 0

)
, θ =

(
c
d

)
, w =

(
w1

w2

)
.
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XBS observer

Based on the adaptive observer proposed in [Zhang, 2002], and
following ideas presented in [Hoàng et al., 2013; 2014], we propose

˙̂w(t) = A(t, y)ŵ(t) +Bu(t) + Ψ(t, u, y)θ̂(t)

+
(
K(t, y) + Υ(t)ΓΥ>(t)C>

) (
y(t)− Cŵ(t)

)
(3a)

˙̂
θ(t) = ΓΥ>(t)C>

(
y(t)− Cŵ(t)

)
(3b)

Υ̇(t) =
(
A(t, y)−K(t, y)C

)
Υ(t) + Ψ(t, u, y) (3c)

with Γ = Γ> > 0 and

K(t, y) =
w1

vx(t)
×



(
k+

1

k+
2

)
, if y = w1 > 0(

k−1
k−2

)
, if y = w1 < 0

(4)
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XBS observer

Theorem 1
Consider system (2) and observer (3). Define w̃ = ŵ − w and
θ̃ = θ̂ − θ. Let the observer gains k±1,2 in (4) satisfy

k+
1 > 0, k+

2 < 0, k−1 = −k+
1 < 0, k−2 = k+

2 < 0.

Assume that the switching signal σ(w1) that selects the observer
gains admits a strictly positive minimal dwell time, that is, any
two consecutive switchings are separated by no less than τD > 0.
If Ψ(t, u(t), y(t)) is persistently exciting, then the origin of the
closed-loop system with state (w̃, θ̃)> is globally asymptotically
stable.
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Dwell time and PE during ABS braking
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Figure: Measured output w1 during an ABS braking simulation.
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Dwell time and PE during ABS braking
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Figure: Eigenvalues of M(t) =
∫ t
t−T Ψ(τ, u(τ), y(τ))>Ψ(τ, u(τ), y(τ))dτ

during an ABS braking simulation.
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Simulation results
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Figure: Real vs estimated states and parameters of the transformed system.
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Inverse change of coordinates
The states of the original system are obtained with

ẑ1 = ŵ1

ẑ2 = ŵ2 −
ĉ

a
ŵ1.

Since w̃ → 0 and θ̃ → 0, then z̃ = ẑ − z → 0.
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Figure: Real vs estimated XBS (simulation results).
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Experimental setup (TU Delft)

Figure: Tyre-in-the-loop testbench.

2 3 4 5 6 7 8

-0.1

0

0.1

0.2

0.3

0.4

0.5

-0.1 0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

1.2

Figure: ABS regulation test.
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Experimental results
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Figure: Real vs estimated states and parameters of the transformed system.
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Experimental results

3.5 4.5 5.5 6.5 7.5

-8

-4

0

4

8

12

16

20

24

Figure: Real vs estimated XBS.
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Experimental results
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Figure: Comparison against augmented-state observer.
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Experimental results
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Simulation results: with perturbed measurements
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Figure: Wheel acceleration offset: real signal vs perturbed measurement.
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Simulation results: with perturbed measurements
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Simulation results: with perturbed measurements
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Part II

Wheel angular velocity and

acceleration estimation
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Wheel velocity estimation mechanism

The most commonly used technology to measure rotational velo-
city is based on incremental shaft encoders.

Output

0

1
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Time-stamping algorithm [Merry et al., 2010; 2013]

It consists in capturing the time instants ti and positions θi of the
last n encoder events, and performing an m-th-order polynomial
fit to approximate the position of the wheel.

Timeݐݐିଵݐିଶ⋯
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Time-stamping algorithm [Merry et al., 2010; 2013]

The position at time t = tk is approximated by

θ(t) = pmt
m + pm−1t

m−1 + . . .+ p0.

The regression problem
tmk−n+1 tm−1

k−n+1 · · · tk−n+1 1
...

...
...

...
...

tmk tm−1
k · · · tk 1



pm
...
p0

 =


θk−n+1

...
θk


is solved for pi via the least squares method, and the velocity and
acceleration are calculated with

ω(t) =
∑m

i=1
ipit

i−1, α(t) =
∑m

i=2
(i− 1)ipit

i−2.
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Encoder imperfections

An ideal encoder is characterised by identical and equidistant
teeth distributed over the encoder’s code-wheel. However, in real
devices sensor imperfections inevitably occur:

I Cycle error

I Eccentricity or tilt of the encoder’s code-wheel

I Pulse-width and phase errors

Sensor Sensor 

A 

B 

180° 

90° 
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Effects of encoder imperfections

In the presence of sensor imperfections, the measured position

θm = θr + fr(θr)

is affected by a small perturbation that may be neglected.
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Figure: Error in pulse transition location as a function of angular position for a 60
pulses-per-revolution encoder.
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Effects of sensor imperfections
In the case of the measured velocity and acceleration

ωm = ωr + ωrf
′
r(θr)

αm = αr + αrf
′
r(θr) + ω2

rf
′′
r (θr)

the perturbation cannot be neglected.
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Figure: Velocity and acceleration measured via the time-stamping algorithm for a
32 m/s constant-velocity reference using different numbers of events.
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State-of-the-art

I [Merry et al., 2013] Error compensation look-up tables.
They work only for a particular encoder and their
construction requires a high-resolution reference sensor.

I [Gustafsson, 2010] Frequency analysis of the wheel speed
for the estimation of the encoder imperfections. Works
only when the speed is constant.

I [Corno and Savaresi, 2010] Notch filter.

I [Panzani et al., 2012] Notch filter.

I [Hoàng et al., 2012] Notch filter.

I [Rallo et al., 2017] Batch constrained least squares
algorithm for the estimation of the encoder imperfections.
Assumes that the speed does not vary significantly within a
single revolution.
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Measurement models

In order to estimate ωr and αr from the available signals, we
introduce the measurement models:

I θm = θr +
∑M

k=1

[
ak sin(kθm) + bk cos(kθm)

]
I ωm = ωr + ωm

∑M

k=1

[
ka′k cos(kθm)− kb′k sin(kθm)

]
I αm = αr + αm

∑M

k=1

[
ka′′k cos(kθm)− kb′′k sin(kθm)

]
−ω2

m

∑M

k=1

[
k2a′′k sin(kθm) + k2b′′k cos(kθm)

]
where ak, bk, a

′
k, b
′
k, a

′′
k and b′′k are unknown.

!4 In general, ak 6= a′k 6= a′′k and bk 6= b′k 6= b′′k. !4
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Measurement models

!4 Due to the delay introduced in the measured signals by the
time-stamping algorithm, in general, ak 6= a′k 6= a′′k and bk 6= b′k 6=
b′′k. !4
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Figure: Off-line least-squares fitting of the Fourier coefficients ak and bk for the
measurement models.
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Estimation algorithm

Let us rewrite the measurement models as:

ωm = ωr + ωmφ(θm)>Dϑ′ (5)

αm = αr +
[
αmφ(θm)>D − ω2

mψ(θm)>D2
]
ϑ′′ (6)

where
D = diag(1, 1, 2, 2, . . .)

φ(θm) =
[
cos(θm) − sin(θm) cos(2θm) − sin(2θm) · · ·

]>
ψ(θm) =

[
sin(θm) cos(θm) sin(2θm) cos(2θm) · · ·

]>
and ϑ′, ϑ′′ contain the corresponding coefficients a′k, b

′
k, a

′′
k, b
′′
k.
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Estimation algorithm

From (5) and (6), ωm and αm can be seen as the sum of a low-
frequency term and a high-frequency (with respect to the first
one) term, of the form

ζ̄ = Φ(θm, ωm, αm)>ϑ. (7)

that depends on the known signals θm, ωm, and αm, and is linear
in the unknown parameters ϑ.

In order to estimate ωr and αr we propose:

High-pass
filter

Parameter
estimation

Velocity or
acceleration
estimation



or




or
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Estimation algorithm

Stage 1: The measured signals are filtered in order to separate
the perturbation term ζ̄ from the other terms in (5) (resp. (6)).
Stage 2: Assuming that ζ ≈ ζ̄, the Fourier coefficients of the pe-
riodic perturbation in (5) (resp. (6)) are estimated via standard
parameter estimation techniques with the parametric model

ζ = Φ(θm, ωm, αm)>ϑ

Stage 3: Using the estimated parameters ϑ̂, the velocity and
acceleration estimates are constructed:

ω̂r = ωm − ωmφ(θm)>Dϑ̂′ (8)

α̂r = αm −
[
αmφ(θm)>D − ω2

mψ(θm)>D2
]
ϑ̂′′ (9)
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Experimental results
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Figure: Measured vs. filtered and estimated signals for a piecewise-constant
velocity reference.
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Experimental results
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Figure: Measured vs. filtered and estimated signals for a piecewise-linear velocity
reference.
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Experimental results
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Figure: Measured vs. filtered and estimated signals for a smooth velocity reference.

39



Future work

I Joint implementation of XBS observer with estimation
algorithm.

I Use of the XBS observer in closed-loop control algorithms.

I Generalization of the switched adaptive observer for a class
of systems with linearizable error dynamics via singular
time-scaling.

I Use of the velocity and acceleration estimation algorithm in
motion control applications, e.g. electrical motors.
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