A switched adaptive observer for extended braking stiffness estimation

Missie Aguado-Rojas William Pasillas-Lépine Antonio Loría

Laboratoire des Signaux et Systèmes (L2S)

Journée d'observation 9/02/2018

Motivation

"Safety is a basic tenet to the [automotive] industry now and will continue to be an ongoing major focus for consumers and manufacturers alike."

Outline

Part I Extended braking stiffness estimation

- Introduction
- XBS dynamics
- Switched adaptive observer
- Simulation and experimental results

Part II Wheel angular velocity and acceleration estimation

- Introduction
- Problem description
- Measurement models
- Estimation algorithm
- Experimental results

Part I

Extended braking stiffness estimation

Wheel dynamics

The longitudinal dynamics of the angular velocity ω of the wheel is described by

Wheel dynamics

The longitudinal dynamics of the angular velocity ω of the wheel is described by

where I is the inertia of the wheel, R is its effective rolling radius, γ_b is the brake efficiency, P_b is the brake pressure, F_x is the tyre force, F_z is the vertical load, $\mu(\lambda)$ is the tyre-road friction coefficient, λ is the wheel slip, and v_x is the speed of the vehicle.

Tyre-road friction coefficient

Burckhardt's tyre characteristic model is defined as

$$\mu(\lambda) = c_1(1 - \exp(-c_2\lambda)) - c_3\lambda$$

where the constants c_i depend on the road conditions.

Figure: Typical tyre-road friction curve for different road surface conditions.

Extended braking stiffness (XBS)

The XBS is defined as the slope of friction coefficient against wheel slip at the operating point, i.e.

Figure: Tyre-road friction and extended braking stiffness (XBS).

State-of-the-art on XBS estimation

- [Sugai et al., 1999] Analysis of the frequency characteristics of a resonance system composed of the vehicle body, the wheel and the road surface.
- ► [Umeno, 2002] Instrumental variable method. Linearization around a constant-velocity operating point.
- [Ono et al., 2003] Recursive least squares algorithm. The XBS is (implicitly) assumed constant.
- ▶ [Villagra et al., 2011] Elementary diagnostic tools and algebraic methods to distinguish one type of road from another. The estimation results are accurate only within a certain validity range.
- ► [Hoàng et al., 2013; 2014] Augmented-state observer. Requires (some) knowledge about the road conditions.

Wheel acceleration and XBS dynamics

Defining as state variables $z_1 = R\dot{\omega} - \dot{v}_x$ and $z_2 = \frac{d\mu(\lambda)}{d\lambda}$, we obtain

$$\dot{z}_1 = -\frac{a}{v_x(t)} z_1 z_2 - bu$$
(1a)
$$\dot{z}_2 = (cz_2 + d) \frac{1}{v_x(t)} z_1$$
(1b)

where $a = \frac{R^2}{I}F_z$, $b = \frac{R}{I}\gamma_b$ are known constant parameters, $u = \dot{P}_b$, $c = -c_2$, $d = -c_2c_3$ are unknown parameters that depend on the road conditions, and v_x is considered as a known external variable.

The **objective** is to design an observer to estimate the (unmeasurable) XBS z_2 under unknown road conditions, using the available information of the wheel acceleration offset z_1 .

Change of coordinates

In order for the system to have a convenient structure that allows us to exploit well-known tools available in the literature, we propose the linear change of coordinates

$$w_1 = z_1$$
$$w_2 = z_2 + \frac{c}{a}z_1$$

which transforms system (1) into

$$\dot{w}_1 = \frac{w_1}{v_x(t)}(cw_1 - aw_2) - bu$$
$$\dot{w}_2 = -\frac{bc}{a}u + \frac{w_1}{v_x(t)}d$$

Change of coordinates

or, equivalently,

$$\dot{w}(t) = A(t, y)w(t) + Bu(t) + \Psi(t, u, y)\theta$$
(2a)
$$y(t) = Cw(t)$$
(2b)

with

$$A(t,y) = \frac{w_1}{v_x(t)} \begin{pmatrix} 0 & -a \\ 0 & 0 \end{pmatrix}, \qquad \Psi(t,u,y) = \begin{pmatrix} \frac{w_1^2}{v_x(t)} & 0 \\ -\frac{b}{a}u & \frac{w_1}{v_x(t)} \end{pmatrix}$$
$$B = \begin{pmatrix} -b \\ 0 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 \end{pmatrix}, \quad \theta = \begin{pmatrix} c \\ d \end{pmatrix}, \quad w = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}.$$

XBS observer

Based on the adaptive observer proposed in [Zhang, 2002], and following ideas presented in [Hoàng et al., 2013; 2014], we propose

$$\dot{\hat{w}}(t) = A(t, y)\hat{w}(t) + Bu(t) + \Psi(t, u, y)\hat{\theta}(t) + \left(K(t, y) + \Upsilon(t)\Gamma\Upsilon^{\top}(t)C^{\top}\right)\left(y(t) - C\hat{w}(t)\right)$$
(3a)

$$\hat{\theta}(t) = \Gamma \Upsilon^{\top}(t) C^{\top} \left(y(t) - C \hat{w}(t) \right)$$
(3b)

$$\dot{\Upsilon}(t) = \left(A(t,y) - K(t,y)C\right)\Upsilon(t) + \Psi(t,u,y)$$
(3c)

with $\Gamma = \Gamma^\top > 0$ and

$$K(t,y) = \frac{w_1}{v_x(t)} \times \begin{cases} \binom{k_1^+}{k_2^+}, & \text{if } y = w_1 > 0\\ \binom{k_1^-}{k_2^-}, & \text{if } y = w_1 < 0 \end{cases}$$
(4)

XBS observer

Theorem 1

Consider system (2) and observer (3). Define $\tilde{w} = \hat{w} - w$ and $\tilde{\theta} = \hat{\theta} - \theta$. Let the observer gains $k_{1,2}^{\pm}$ in (4) satisfy

$$k_1^+ > 0, \qquad k_2^+ < 0, \qquad k_1^- = -k_1^+ < 0, \qquad k_2^- = k_2^+ < 0.$$

Assume that the switching signal $\sigma(w_1)$ that selects the observer gains admits a strictly positive minimal dwell time, that is, any two consecutive switchings are separated by no less than $\tau_D > 0$. If $\Psi(t, u(t), y(t))$ is persistently exciting, then the origin of the closed-loop system with state $(\tilde{w}, \tilde{\theta})^{\top}$ is globally asymptotically stable.

Dwell time and PE during ABS braking

Figure: Measured output w_1 during an ABS braking simulation.

Dwell time and PE during ABS braking

Figure: Eigenvalues of $M(t) = \int_{t-T}^{t} \Psi(\tau, u(\tau), y(\tau))^{\top} \Psi(\tau, u(\tau), y(\tau)) d\tau$ during an ABS braking simulation.

Simulation results

Figure: Real vs estimated states and parameters of the transformed system.

Inverse change of coordinates

The states of the original system are obtained with

$$\hat{z}_1 = \hat{w}_1$$

 $\hat{z}_2 = \hat{w}_2 - \frac{\hat{c}}{a}\hat{w}_1.$

Since $\tilde{w} \to 0$ and $\tilde{\theta} \to 0$, then $\tilde{z} = \hat{z} - z \to 0$.

Figure: Real vs estimated XBS (simulation results).

Experimental setup (TU Delft)

Figure: Tyre-in-the-loop testbench.

 $\label{eq:Figure:ABS regulation test.}$

Figure: Real vs estimated states and parameters of the transformed system.

Figure: Real vs estimated XBS.

Figure: Comparison against augmented-state observer.

Figure: Comparison against augmented-state observer.

Figure: Comparison against augmented-state observer.

Simulation results: with perturbed measurements

Figure: Wheel acceleration offset: real signal vs perturbed measurement.

Simulation results: with perturbed measurements

Figure: Real vs estimated states and parameters of the transformed system.

Simulation results: with perturbed measurements

Figure: Real vs estimated XBS.

Part II

Wheel angular velocity and acceleration estimation

Wheel velocity estimation mechanism

The most commonly used technology to measure rotational velocity is based on incremental shaft encoders.

Time-stamping algorithm [Merry et al., 2010; 2013]

It consists in capturing the time instants t_i and positions θ_i of the last n encoder events, and performing an m-th-order polynomial fit to approximate the position of the wheel.

Time-stamping algorithm [Merry et al., 2010; 2013]

The position at time $t = t_k$ is approximated by

$$\theta(t) = p_m t^m + p_{m-1} t^{m-1} + \ldots + p_0.$$

The regression problem

$$\begin{pmatrix} t_{k-n+1}^m & t_{k-n+1}^{m-1} & \cdots & t_{k-n+1} & 1\\ \vdots & \vdots & \vdots & \vdots & \vdots\\ t_k^m & t_k^{m-1} & \cdots & t_k & 1 \end{pmatrix} \begin{pmatrix} p_m\\ \vdots\\ p_0 \end{pmatrix} = \begin{pmatrix} \theta_{k-n+1}\\ \vdots\\ \theta_k \end{pmatrix}$$

is solved for p_i via the least squares method, and the velocity and acceleration are calculated with

$$\omega(t) = \sum_{i=1}^{m} i p_i t^{i-1}, \qquad \alpha(t) = \sum_{i=2}^{m} (i-1) i p_i t^{i-2}.$$

An ideal encoder is characterised by identical and equidistant teeth distributed over the encoder's code-wheel. However, in real devices sensor imperfections inevitably occur:

An ideal encoder is characterised by identical and equidistant teeth distributed over the encoder's code-wheel. However, in real devices sensor imperfections inevitably occur:

► Cycle error

An ideal encoder is characterised by identical and equidistant teeth distributed over the encoder's code-wheel. However, in real devices sensor imperfections inevitably occur:

- ► Cycle error
- ▶ Eccentricity or tilt of the encoder's code-wheel

An ideal encoder is characterised by identical and equidistant teeth distributed over the encoder's code-wheel. However, in real devices sensor imperfections inevitably occur:

- ► Cycle error
- ▶ Eccentricity or tilt of the encoder's code-wheel
- ▶ Pulse-width and phase errors

Effects of encoder imperfections

In the presence of sensor imperfections, the measured position

$$\theta_m = \theta_r + f_r(\theta_r)$$

is affected by a small perturbation that may be neglected.

Figure: Error in pulse transition location as a function of angular position for a 60 pulses-per-revolution encoder.

Effects of sensor imperfections

In the case of the measured velocity and acceleration

$$\omega_m = \omega_r + \omega_r f_r'(\theta_r)$$

$$\alpha_m = \alpha_r + \alpha_r f'_r(\theta_r) + \omega_r^2 f''_r(\theta_r)$$

the perturbation cannot be neglected.

Figure: Velocity and acceleration measured via the time-stamping algorithm for a 32 m/s constant-velocity reference using different numbers of events.

State-of-the-art

- ▶ [Merry et al., 2013] Error compensation look-up tables. They work only for a particular encoder and their construction requires a high-resolution reference sensor.
- [Gustafsson, 2010] Frequency analysis of the wheel speed for the estimation of the encoder imperfections. Works only when the speed is constant.
- ▶ [Corno and Savaresi, 2010] Notch filter.
- ▶ [Panzani et al., 2012] Notch filter.
- ▶ [Hoàng et al., 2012] Notch filter.
- [Rallo et al., 2017] Batch constrained least squares algorithm for the estimation of the encoder imperfections. Assumes that the speed does not vary significantly within a single revolution.

Measurement models

In order to estimate ω_r and α_r from the available signals, we introduce the measurement models:

$$\bullet \qquad \theta_m = \theta_r + \sum_{k=1}^M \left[a_k \sin(k\theta_m) + b_k \cos(k\theta_m) \right]$$

•
$$\omega_m = \omega_r + \omega_m \sum_{k=1}^M \left[k a'_k \cos(k\theta_m) - k b'_k \sin(k\theta_m) \right]$$

$$\bullet \qquad \alpha_m = \alpha_r + \alpha_m \sum_{k=1}^M \left[k a_k'' \cos(k\theta_m) - k b_k'' \sin(k\theta_m) \right] \\ -\omega_m^2 \sum_{k=1}^M \left[k^2 a_k'' \sin(k\theta_m) + k^2 b_k'' \cos(k\theta_m) \right]$$

where a_k , b_k , a'_k , b'_k , a''_k and b''_k are unknown.

Measurement models

In order to estimate ω_r and α_r from the available signals, we introduce the measurement models:

$$\bullet \qquad \theta_m = \theta_r + \sum_{k=1}^M \left[a_k \sin(k\theta_m) + b_k \cos(k\theta_m) \right]$$

•
$$\omega_m = \omega_r + \omega_m \sum_{k=1}^M \left[k a'_k \cos(k\theta_m) - k b'_k \sin(k\theta_m) \right]$$

where a_k , b_k , a'_k , b'_k , a''_k and b''_k are unknown.

 $\triangle \quad \text{In general, } a_k \neq a_k' \neq a_k'' \text{ and } b_k \neq b_k' \neq b_k''. \ \triangle$

Measurement models

▲ Due to the delay introduced in the measured signals by the time-stamping algorithm, in general, $a_k \neq a'_k \neq a''_k$ and $b_k \neq b'_k \neq b''_k$.

Figure: Off-line least-squares fitting of the Fourier coefficients a_k and b_k for the measurement models.

Estimation algorithm

Let us rewrite the measurement models as:

$$\omega_m = \omega_r + \omega_m \phi(\theta_m)^\top D\vartheta' \tag{5}$$

$$\alpha_m = \alpha_r + \left[\alpha_m \phi(\theta_m)^\top D - \omega_m^2 \psi(\theta_m)^\top D^2\right] \vartheta'' \tag{6}$$

where

$$D = \operatorname{diag}(1, 1, 2, 2, \ldots)$$
$$\phi(\theta_m) = \begin{bmatrix} \cos(\theta_m) & -\sin(\theta_m) & \cos(2\theta_m) & -\sin(2\theta_m) & \cdots \end{bmatrix}^\top$$
$$\psi(\theta_m) = \begin{bmatrix} \sin(\theta_m) & \cos(\theta_m) & \sin(2\theta_m) & \cos(2\theta_m) & \cdots \end{bmatrix}^\top$$
and ϑ', ϑ'' contain the corresponding coefficients a'_k, b'_k, a''_k, b''_k .

Estimation algorithm

From (5) and (6), ω_m and α_m can be seen as the sum of a low-frequency term and a high-frequency (with respect to the first one) term, of the form

$$\bar{\zeta} = \Phi(\theta_m, \omega_m, \alpha_m)^\top \vartheta.$$
(7)

that depends on the known signals θ_m , ω_m , and α_m , and is linear in the unknown parameters ϑ .

In order to estimate ω_r and α_r we propose:

Estimation algorithm

Stage 1: The measured signals are filtered in order to separate the perturbation term $\overline{\zeta}$ from the other terms in (5) (resp. (6)). **Stage 2:** Assuming that $\zeta \approx \overline{\zeta}$, the Fourier coefficients of the periodic perturbation in (5) (resp. (6)) are estimated via standard parameter estimation techniques with the parametric model

$$\zeta = \Phi(\theta_m, \omega_m, \alpha_m)^\top \vartheta$$

Stage 3: Using the estimated parameters $\hat{\vartheta}$, the velocity and acceleration estimates are constructed:

$$\widehat{\omega}_r = \omega_m - \omega_m \phi(\theta_m)^\top D\widehat{\vartheta}' \tag{8}$$

$$\widehat{\alpha}_r = \alpha_m - \left[\alpha_m \phi(\theta_m)^\top D - \omega_m^2 \psi(\theta_m)^\top D^2\right] \widehat{\vartheta''}$$
(9)

Figure: Measured vs. filtered and estimated signals for a piecewise-constant velocity reference.

Figure: Measured vs. filtered and estimated signals for a piecewise-linear velocity reference.

Figure: Measured vs. filtered and estimated signals for a smooth velocity reference.

Future work

- ▶ Joint implementation of XBS observer with estimation algorithm.
- ▶ Use of the XBS observer in closed-loop control algorithms.
- ► Generalization of the switched adaptive observer for a class of systems with linearizable error dynamics via singular time-scaling.
- ▶ Use of the velocity and acceleration estimation algorithm in motion control applications, e.g. electrical motors.

References

- M. Corno and S.M. Savaresi (2010). Experimental identification of engine-to-slip dynamics for traction control application in a sport motorbike. *European Journal* of Control, 16(1):88-108.
- F. Gustafsson (2010). Rotational speed sensors: limitations, pre-processing and automotive applications. IEEE Instrumentation & Measurement Magazine, 13(2):16-23.
- J.P. Hespanha (2004). Uniform stability of switched linear systems: Extensions of LaSalle's invariance principle. *IEEE Transactions on Automatic Control*, 49(4):470–482.
- T.B. Hoàng, W. Pasillas-Lépine and A. De Bernardinis (2012). Reducing the impact of wheel-frequency oscillations in continuous and hybrid ABS strategies. *Proceedings of the 11th International Symposium on Advanced Vehicle Control.*
- ▶ T.B. Hoàng, W. Pasillas-Lépine and M. Netto (2013). Closed-loop wheel-acceleration control based on an extended braking stiffness observer. *Proceedings of the American Control Conference.*
- T.B. Hoàng, W. Pasillas-Lépine, A. De Bernardinis and M. Netto (2014). Extended braking stiffness estimation based on a switched observer, with an application to wheel-acceleration control. *IEEE Transactions on Control Systems Technology*, 22(6):2384-2392.
- R. Merry, M. van de Molengraft and M. Steinbuch (2010). Velocity and acceleration estimation for optical incremental encoders. *Mechatronics*, 20(1):20-26.

References

- R. Merry, M. van de Molengraft and M. Steinbuch (2013). Optimal higher-order encoder time-stamping. *Mechatronics*, 23(5):481-490.
- G. Panzani, M. Corno and S.M. Savaresi (2012). On the periodic noise affecting wheel speed measurement. Proceedings of the 16th IFAC Symposium on System Identification.
- G. Rallo, S. Formentin, M. Corno, and S. M. Savaresi (2017). Real-time pedaling rate estimation via wheel speed filtering. Proceedings of the 20th IFAC World Congress, pp. 6184–6189.
- E. Ono, K. Asano, M. Sugai, S. Ito, M. Yamamoto, M. Sawada and Y. Yasui (2003). Estimation of automotive tire force characteristics using wheel velocity. *Control Engineering Practice*, 11(12):1361-1370.
- M. Sugai, H. Yamaguchi, M. Miyashita, T. Umeno and K. Asano (1999). New control technique for maximizing braking force on antilock braking system. *Vehicle System Dynamics*, 32(4-5):299-312.
- ▶ T. Umeno (2002). Estimation of tire-road friction by tire rotational vibration model. *R⊗D Review of Toyota CRDL*, 37(3).
- J. Villagra, B. d'Andréa Novel, M. Fliess and H. Mounier (2011). A diagnosis-based approach for tire-road forces and maximum friction estimation. *Control Engineering Practice*, 19(2):174-184.
- Q. Zhang (2002). Adaptive observer for multiple-input-multiple-output (MIMO) linear time-varying systems. *IEEE Transactions on Automatic Control*, 47(3):525-529.