Stability of the Kalman Filter for Continuous Time Output Error Systems

Boyi Ni and Qinghua Zhang

Journées Observation, 17 juin 2016 – CNAM – Paris

Introduction

Classical linear system state estimators – Luenberger observer and Kalman filter – have similar structures.

Luenberger observer: deterministic point of view, stability of the error dynamics arbitrarily tunable (observability condition).

Kalman filter: stochastic point of view, optimal in the sense of minimum variance.

Stability of the (error dynamics) of the Kalman filter?

Introduction

Classical stability result of the Kalman filter (Kalman 1963), assumes that the considered linear system is observable and controllable regarding the process noise.

➢Here we consider process noise-free systems, which are obviously uncontrollable regarding the noise.

Motivations:

Noise-free physical state equationsOutput-error system identification

A few words about output error system identification

$$\begin{aligned} dx(t) &= A(t)x(t)dt + B(t)u(t)dt + \mathbf{0} \\ dy(t) &= C(t)x(t)dt + R^{\frac{1}{2}}(t)d\eta(t) \end{aligned}$$

Classical Prediction Error Method (PEM) is usually limited to **stable** Linear Time Invariant (LTI) systems, yet intermediate iterations may result in **unstable models** for weakly stable systems (typically unstable poles are projected into the stable region).

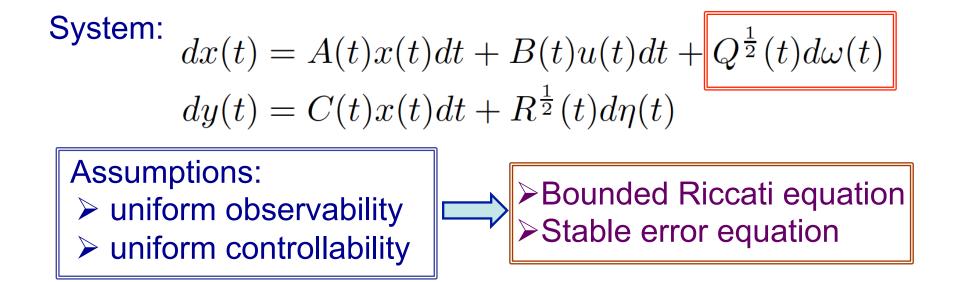
Considered Linear Time Varying (LTV) systems

$$dx(t) = A(t)x(t)dt + B(t)u(t)dt$$
$$dy(t) = C(t)x(t)dt + R^{\frac{1}{2}}(t)d\eta(t)$$

cover also linear parameter varying (LPV) systems and state affine systems

$$\begin{aligned} dx(t) &= A(t, u(t), y(t))x(t)dt + B(t, u(t), y(t))u(t)dt \\ dy(t) &= C(t, u(t), y(t))x(t)dt + R^{\frac{1}{2}}(t)d\eta(t) \end{aligned}$$

Classical stability results



The controllability assumption refers to the process noise term $Q^{rac{1}{2}}(t)d\omega(t)$

Kalman filter for output error systems

$$dx(t) = A(t)x(t)dt + B(t)u(t)dt + \mathbf{0}$$

$$dy(t) = C(t)x(t)dt + R^{\frac{1}{2}}(t)d\eta(t)$$

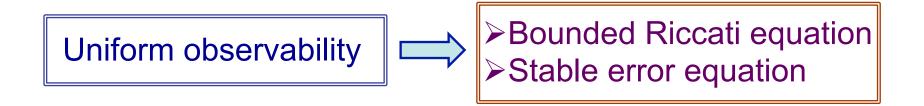
Absence of process noise: the controllability condition in the classical results cannot be satisfied.

 $d\hat{x}(t) = A(t)\hat{x}(t)dt + B(t)u(t)dt + K(t)(dy(t) - C(t)\hat{x}(t)dt)$ $K(t) = P(t)C^{T}(t)R^{-1}(t)$ $\frac{d}{dt}P(t) = A(t)P(t) + P(t)A^{T}(t) - P(t)C(t)^{T}R^{-1}(t)C(t)P(t)$ $\hat{x}(t_{0}) = x_{0}, P(t_{0}) = P_{0}$

Main new results

$$dx(t) = A(t)x(t)dt + B(t)u(t)dt + \mathbf{0}$$

$$dy(t) = C(t)x(t)dt + R^{\frac{1}{2}}(t)d\eta(t)$$



No controllability condition required!

Properties of the Riccati equation

If A(t), B(t), C(t), R(t) are bounded and piecewise continuous, $P(t_0)$ is positive definite, and [A(t), C(t)] is uniformly observable, then the solution of

$$\frac{d}{dt}P(t) = A(t)P(t) + P(t)A^{T}(t) - P(t)C(t)^{T}R^{-1}(t)C(t)P(t) + 0$$

is positive definite and upper bounded.

Boundedness of the Kalman filter

The solution of the Riccati equation P(t) is bounded,

so is the Kalman gain

$$K(t) = P(t)C^{T}(t)R^{-1}(t)$$

Properties of the Riccati equation

Proof hints: let $P(t) = \Omega^{-1}(t)$, then $\Omega(t)$ satisfies the (linear) Lyapunov equation

$$\frac{d\Omega(t)}{dt} + A^T(t)\Omega(t) + A(t)\Omega(t) = C^T(t)R^{-1}(t)C(t)$$

$$\Omega(t_0) = P_0^{-1}$$

$$\Omega(t) = \Phi^{T}(t_{0}, t)\Omega(t_{0})\Phi(t_{0}, t) + \int_{t_{0}}^{t} \Phi^{T}(s, t)C^{T}(s)R^{-1}(s)C(s)\Phi(s, t)ds$$

The error dynamics of the Kalman filter

$$\tilde{x}(t) \triangleq x(t) - \hat{x}(t)$$
Noise term
$$d\tilde{x}(t) = (A(t) - K(t)C(t))\tilde{x}(t)dt - K(t)R^{\frac{1}{2}}(t)d\eta(t)$$

The deterministic error dynamics
$$\frac{d}{dt}z(t) = (A(t) - K(t)C(t))z(t)$$

Asymptotic stability of the Kalman filter

If A(t), B(t), C(t), R(t) are bounded and piecewise continuous, $P(t_0)$ is positive definite, and [A(t), C(t)] is uniformly observable, then the deterministic error dynamics of the Kalman filter $\frac{d}{dt}z(t) = (A(t) - K(t)C(t))z(t)$

is asymptotically stable.

The stability of $\dot{x}(t) = A(t)x(t)$ is not required.

Hints for the stability proof

For the deterministic error dynamics

$$\frac{d}{dt}z(t) = (A(t) - K(t)C(t))z(t)$$

define the "natural" Lyapunov function candidate

$$V(z(t),t) \triangleq z^T(t)P^{-1}(t)z(t)$$

In the classical case (uniform observability & controllability), P(t) has strictly positive **upper & lower** bounds \rightarrow classical Lyapunov statibility analysis.

For output error systems, P(t) has no strictly positive lower bound (may tend to zero)!

Hints for the stability proof

Typically singular matrix

$$\frac{dV(z(t),t)}{dt} = -z^T(t)C^T(t)R^{-1}(t)C(t)z(t) \le 0$$

 $\rightarrow V(z(t),t)$ does not increase, but does it tend to zero?

In the classical case,

$$\frac{dV(z(t),t)}{dt} = -z^T(t)C^T(t)R^{-1}(t)C(t)z(t) - z^T(t)P^{-1}(t)Q(t)P^{-1}(t)z(t)$$

Missing for output error systems

Hints for the stability proof

The proof is based on the following lemma.

If the pair [A(t), C(t)] is uniformly observable, then so is the pair [A(t)-K(t)C(t), C(t)] for any bounded K(t).

A classical result revisited in

Observability conservation by output feedback and observability Gramian bounds.

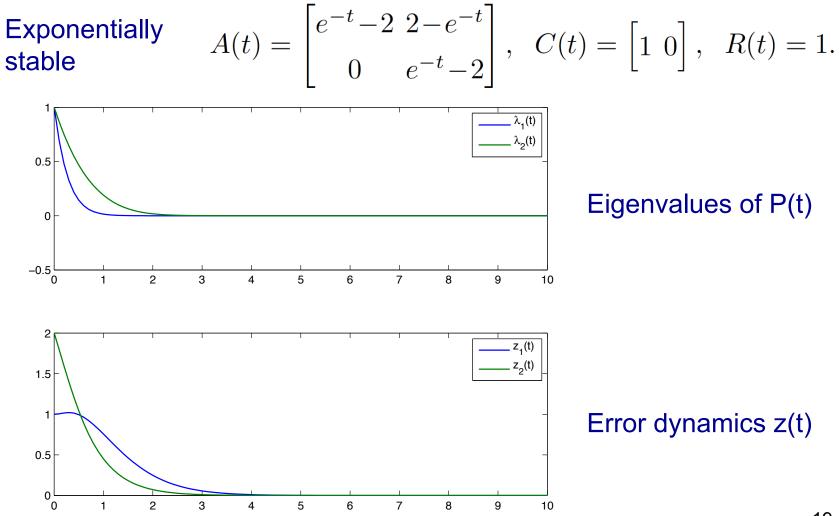
Zhang & Zhang, Automatica 60:38-42, 2015.

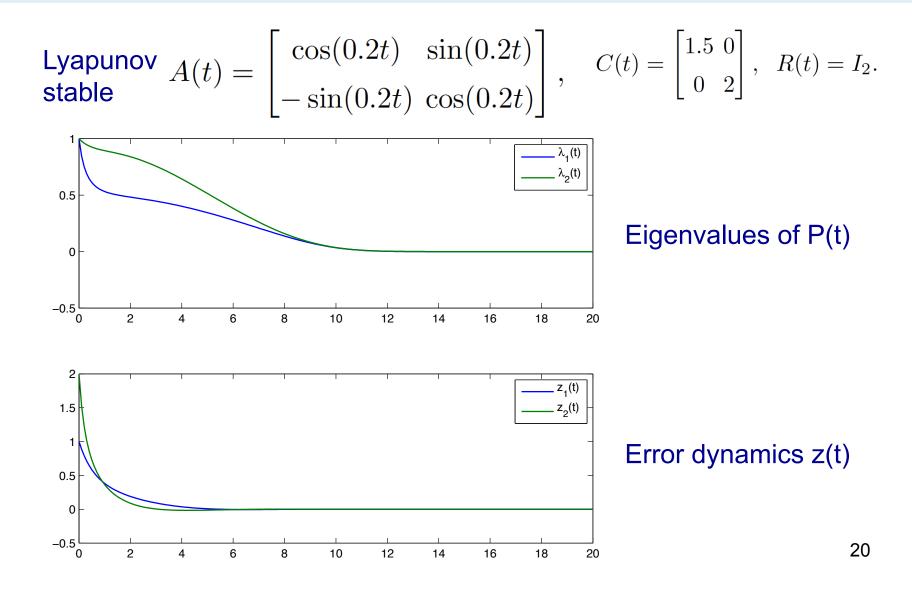
Exponential stability of the Kalman filter

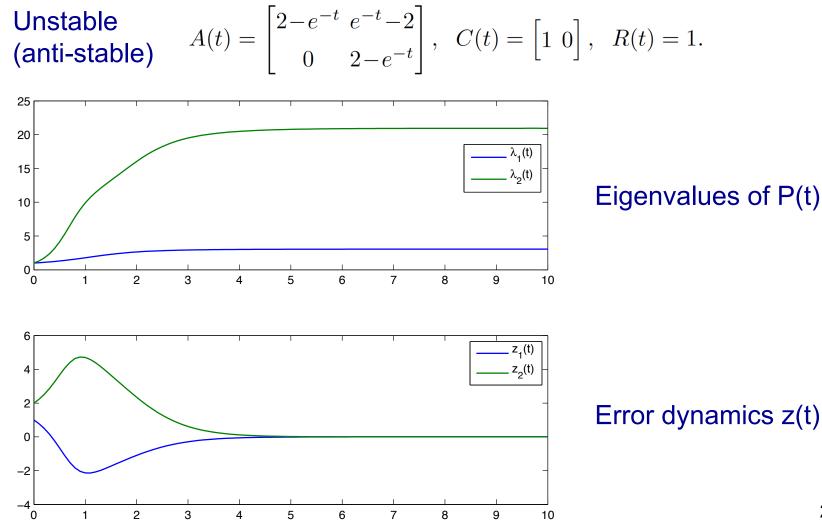
Moreover, if $\dot{x}(t) = A(t)x(t)$ is exponentially stable, or if $\dot{x}(t) = -A(t)x(t)$ is exponentially stable (anti-stable or strongly instable), then the error dynamics of the Kalman filter is exponentially stable. Lyapunov stable output error systems

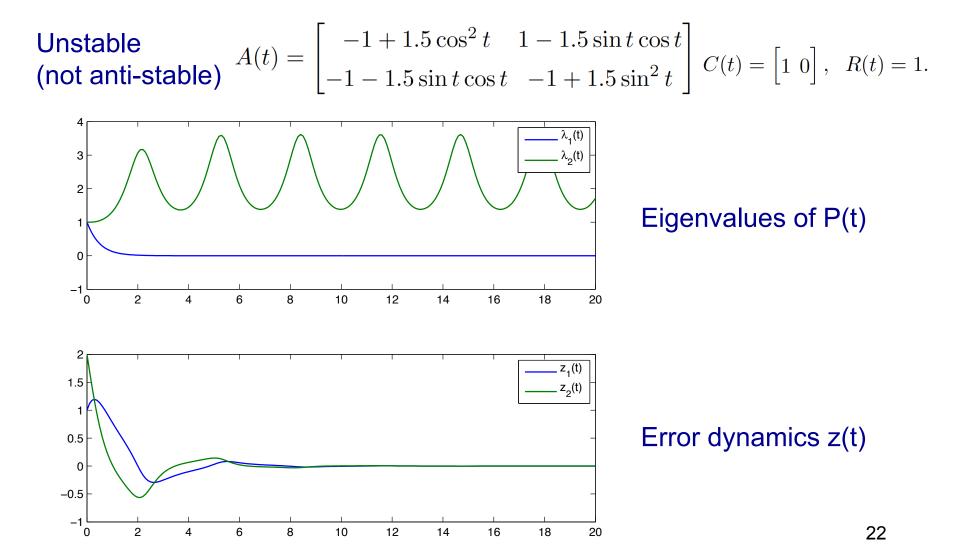
If $\dot{x}(t) = A(t)x(t)$ is Lyapunov stable, that is, the state transition matrix $\|\Phi(t, t_0)\|$ is bounded, then the error dynamics of the Kalman filter satisfies

$$||z(t)||^2 \le \frac{\mu}{t - t_0} ||z(t_0)||^2$$









Conclusion

- For output error systems, the uniform observability ensures the stability of the Kalman filter (no controllability condition).
- It is possible to design Kalman filters as if the process noise was present, but such filters are not optimal in the sense of minimum variance.