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Ø Luenberger observer: deterministic point of view, stability 
of the error dynamics arbitrarily tunable (observability 
condition).  

Ø Kalman filter: stochastic point of view, optimal in the 
sense of minimum variance. 

Introduction 
Classical linear system state estimators − Luenberger 
observer and Kalman filter − have similar structures. 

Stability of the (error dynamics) 
of the Kalman filter? 
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Ø Classical stability result of the Kalman filter (Kalman 1963), 
assumes that the considered linear system is observable 
and controllable regarding the process noise. 

Ø Here we consider process noise-free systems, which are 
obviously uncontrollable regarding the noise. 

Introduction 

     Motivations: 
Ø Noise-free physical state equations   
Ø Output-error system identification 



A few words about output error system identification 

Classical Prediction Error Method (PEM) is usually 
limited to stable Linear Time Invariant (LTI) 
systems, yet intermediate iterations may result in 
unstable models for  weakly stable systems 
(typically unstable poles are projected into the 
stable region). 
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Considered Linear Time Varying (LTV) systems 

cover also linear parameter varying (LPV) systems  
and state affine systems 
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Classical stability results 
System: 

     Assumptions: 
Ø  uniform observability 
Ø  uniform controllability 

The controllability assumption refers to the 
process noise term 

Ø Bounded Riccati equation 
Ø Stable error equation 



Kalman filter for output error systems 

Absence of process noise: the controllability 
condition in the classical results cannot be 
satisfied.  

+ 0  
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Main new results 

No controllability condition required! 

+ 0  

Uniform observability Ø Bounded Riccati equation 
Ø Stable error equation 
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Properties of the Riccati equation 

is positive definite and upper bounded. 
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If 
piecewise continuous, is positive definite,  

is uniformly observable, then the 

are bounded and 

solution of 
and  

+ 0  

Missing Q(t) 



Boundedness of the Kalman filter 
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The solution of the Riccati equation 
is bounded, …… 
 
so is the Kalman gain 
 

. 
 



Properties of the Riccati equation 
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Proof hints: let                          , then         satisfies   

the (linear) Lyapunov equation   



The error dynamics of the Kalman filter 
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The deterministic error dynamics 

Noise term 



Asymptotic stability of the Kalman filter 
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If 
piecewise continuous, is positive definite,  

is uniformly observable, then the 

are bounded and 

deterministic error dynamics of the Kalman filter 

and  

The stability of                             is not required.  

is asymptotically stable.  

 !x(t) = A(t)x(t)



Hints for the stability proof   
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In the classical case (uniform observability & controllability), 
P(t)  has strictly positive upper & lower bounds à classical 
Lyapunov statibility analysis. 

define the “natural” Lyapunov function candidate  

For the deterministic error dynamics 

For output error systems, P(t) has no strictly positive lower 
bound (may tend to zero)!  



Hints for the stability proof   
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In the classical case, 

àV(z(t),t) does not increase, but does it tend to zero? 

Typically singular matrix 

Missing for output error systems 



Hints for the stability proof   
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The proof is based on the following lemma. 

If the pair [A(t), C(t)] is uniformly observable, 
then so is the pair  [A(t)−K(t)C(t), C(t)] for any 
bounded K(t). 

A classical result revisited in  
Observability conservation by output feedback and observability 
Gramian bounds.	
Zhang & Zhang, Automatica 60:38-42, 2015.  	



Exponential stability of the Kalman filter 
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Moreover, if  is exponentially stable, 

dynamics of the Kalman filter is exponentially 
stable.  

 !x(t) = A(t)x(t)
or if                          is exponentially stable  
(anti-stable or strongly instable), then the error  

 !x(t) = −A(t)x(t)



Lyapunov stable output error systems 
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If                          is Lyapunov stable, 
that is, the state transition matrix     

dynamics of the Kalman filter satisfies 

 !x(t) = A(t)x(t)

is bounded, then the error 



Numerical example 1 
Exponentially 
stable 
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Eigenvalues of P(t) 

Error dynamics z(t) 
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Numerical example 2 
Lyapunov 
stable 

Eigenvalues of P(t) 

Error dynamics z(t) 
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Numerical example 3 
Unstable 
(anti-stable) 

Eigenvalues of P(t) 

Error dynamics z(t) 
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Numerical example 4 
Unstable 
(not anti-stable) 

Eigenvalues of P(t) 

Error dynamics z(t) 
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Conclusion 

Ø  For output error systems, the uniform 
observability ensures the stability of the Kalman 
filter (no controllability condition). 

Ø  It is possible to design Kalman filters as if the 
process noise was present, but such filters are 
not optimal in the sense of minimum variance.      
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