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Finite-horizon discounted optimal control:
stability and performance

Mathieu Granzotto, Romain Postoyan, Lucian Buşoniu, Dragan Nešić, and Jamal Daafouz

Abstract—Discounted costs are ubiquitous in fields like approx-
imate dynamic programming and reinforcement learning, which
provide a variety of efficient algorithms to construct near-optimal
inputs for nonlinear discrete-time systems. The related literature
concentrates on optimality and largely ignores the stability and
robustness issue. In this context, we analyse the stability of
nonlinear discrete-time systems whose inputs are generated by an
algorithm that minimizes a discounted finite-horizon cost, as it
appears to be the case for many optimization techniques including
value iteration for instance. Assumptions are made related on
the stabilizability of the system and its detectability with respect
to the stage cost. Then, a Lyapunov function for the closed-
loop system is constructed and a uniform semiglobal stability
property is ensured, where the adjustable parameters are both
the discount factor and the horizon length. Stronger stability
properties such as global exponential stability are also provided
by strengthening the initial assumptions. We give bounds on the
discount factor and the horizon length under which stability holds
and we show on examples that these are less conservative than the
bounds of the literature for discounted infinite-horizon cost and
undiscounted finite-horizon costs, respectively. In addition, we
provide new relationships between the optimal value functions of
the discounted, undiscounted, infinite-horizon and finite-horizon
costs respectively, which appear to be very different from those
available in the approximate dynamic programming literature.
These relationships rely on assumptions that are more likely to be
satisfied in a control context. Finally, we investigate stability when
only a near-optimal sequence of inputs for the discounted finite-
horizon cost is available, covering approximate value iteration as
a particular case.

I. INTRODUCTION

Various algorithms used in approximated dynamic program-
ming generate near-optimal control inputs for nonlinear discrete-
time systems, see e.g., [5], [12], [18], [23], [25]. In most cases,
the cost is discounted in the sense that the stage cost is weighted
by a time-varying decaying term γk where γ ∈ (0, 1) and k is
the discrete time. This choice is made to obtain a contraction
property of the cost brought by the discount factor γ, which
is the cornerstone of numerous studies. Discounted costs can
also be justifiesd by the considered context. In economics for
instance, γk may represents the depreciation of the cost paid
in the future due to inflation. The techniques available in the
aforementioned references largely concentrate on optimality,
eluding stability while the latter is of primary importance

M. Granzotto, R. Postoyan and J. Daafouz are with the Université de Lorraine,
CNRS, CRAN, F-54000 Nancy, France (e-mails: {name.surname}@univ-
lorraine.fr).
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in control engineering. The few works addressing stability
often consider specific settings or algorithms, see e.g. [1], [3],
[22]. Analyzing stability in this context is challenging, mostly
because of the discount factor γ ∈ (0, 1), which makes the
discounted stage cost go to zero as time grows. The recent work
in [20] provides results on the stability of nonlinear discrete-
time systems controlled by an optimal sequence of inputs,
which minimizes an infinite-horizon discounted cost. When the
sequence of inputs is only near-optimal, results are also given
in [20] but these are not applicable to most algorithms because
the near-optimality bound is required to be uniform with respect
to γ, which is not the case in general. For instance, the usual
bounds for both value iteration [18] and policy iteration [16],
[17] include terms that are linear in 1

1−γ . These algorithms
sit at the core of the approximate dynamic programming and
reinforcement learning fields [2], [23], [26]. There is therefore
a need for tools to analyse stability of nonlinear discrete-
time systems controlled by near-optimal sequences of inputs,
for infinite-horizon discounted costs, thus building a bridge
between techniques from approximate dynamic programming
and reinforcement learning on the one hand, and control on
the other.

A closer look at value iteration reveals an important reason
for the 1 − γ factor: the algorithm stops after d iterations,
estimating a value corresponding to the sum of d stage costs.
Then, it accepts an error of the form γd

1−γ to cover the remaining
stage costs up to the infinite horizon. This holds even when
the solution is exactly represented. In fact, even though it
aims for the infinite-horizon solution, when initialized with
zero values and stopped after a number of iterations, the
algorithm actually provides a horizon-d optimal solution. This
feature is shared by other methods that work similarly, such
as optimistic planning [12]. In this context, the main objective
of this paper is to provide stability results for (near)-optimal
finite-horizon discounted costs, when the system is nonlinear.
We are not aware of such results in the literature. The works
in [8], [9], [24] propose generic conditions when the cost
is finite-horizon but undiscounted, while [20] (and recently
[6]) focuses on the case where the horizon is infinite and
the stage cost is discounted, as already mentioned. In [19],
the authors investigate dissipativity properties of finite-horizon
discounted costs, but not stability. The fact that the cost is
finite-horizon and involves a discount factor leads to major
technical difficulties in the stability analysis. Indeed, there is
an intricate interaction between the horizon and the discount
factor, and stating a precise relationship under which stability
holds is non-trivial. In other words, we cannot simply combine
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the results of [8] and [20] to obtain the desired result: a new
stability analysis is needed.

We assume that the inputs are computed in a receding-
horizon fashion, as in model predictive control. This would
correspond to applying the first element of the input sequence
obtained after d iterations of the value iteration algorithm as
state feedback. We start with essentially the same assumptions
as in [8], [20], namely that the plant is stabilizable and the
stage cost is detectable. As in [8], we use a generic measure
σ to define stability, thus covering the stability of the origin
or of more general sets in a unified way. We then present
a new Lyapunov analysis, which allows us to prove that the
closed-loop system satisfies a semiglobal practical stability
property provided the horizon length d and the discount factor
γ are sufficiently large and sufficiently close to 1, respectively.
Stronger stability properties are then provided by strengthening
the assumptions, and explicit bounds on γ and d are given.
The Lyapunov function used to prove stability is continuous
under mild assumptions, ensuring the robustness of the stability
property according to [15]. It appears that the presented
Lyapunov analysis differs from those in [8], [20] even when
γ = 1 and d =∞, respectively. This allows us to derive new
bounds on γ or d, according to the considered scenario, which
may be less conservative than those in [8], [20] as shown on
several examples in the preliminary version of this work [7];
this constitutes an additional contribution of the paper.

While the general primary goal of this work is to make opti-
mization techniques used in approximate dynamic programming
amenable to control in the sense that stability is ensured, our
assumptions also allows improving the performance analysis
currently available in the corresponding literature, which is
of major interest. As explained above, the minimization of
the discounted finite-horizon cost is done to approximately
optimize the original discounted infinite-horizon cost. The
bounds on the difference between these two costs provided
in approximate dynamic programming are of the form γd

1−γ ,
see [2]. We provide very different bounds here, which have
the next key features: (i) they do not explode to infinity as
γ tends to 1; (ii) they are small when so is σ(x), where x is
the plant initial condition and σ the measure we use to state
stability. Furthermore, these bounds do not require the stage
cost to take value in [0, 1], as in [2]. We believe that there
is an important message here. Related results are derived in
[10] for undiscounted costs. Beside the fact that we allow the
cost to be discounted here, we rely on different assumptions
compared to [10], which leads to different bounds.

Finally, we study the scenario where the sequence of inputs
is only near-optimal. The assumption we make on the inputs
covers those generated by approximate value iteration as a
particular case. We then adapt the arguments used before
to ensure the stability of the closed-loop system, still in a
semiglobal and practical sense. Compared to the related results
of the literature, [11] in particular: (i) we study stability of a
generic closed set, and not only of the origin; (ii) we do not
need the explicit knowledge of a globally stabilizing policy;
(iii) we address discounted costs; (iv) the stage cost is not
necessarily quadratic.

Compared to the preliminary version of this work in [7], the

completely novel elements are: the performance analysis, i.e.
the relationship between the discounted finite-horizon cost and
the infinite-horizon one, and the case of near-optimal inputs.
Additionally, we provide conditions for semiglobal asymptotic
stability as well as the full proofs of the results.

The rest of the paper is organized as follows. The problem
is formally stated in Section II. The main results are given
in Section III. The relationships between the optimal value
functions of the discounted/undiscounted, finite/infinite-horizon
costs are provided in Section IV. In Section V, we investigate
the case where the sequence of inputs is near-optimal. The
proofs are presented in Section VI and conclusions are given
in Section VII. The appendix contains technical results needed
in the main proofs.
Notation. Let R := (−∞,∞), R≥0 := [0,∞), Z≥0 :=
{0, 1, 2, . . .} and Z>0 := {1, 2, . . .}. We use (x, y) to denote
[xT , yT ]T , where (x, y) ∈ Rn × Rm and n,m ∈ Z>0. A
function χ : R≥0 → R≥0 is of class K if it is continuous,
zero at zero and strictly increasing, and it is of class K∞
if it is of class K and unbounded. A continuous function
β : R≥0 × R≥0 → R≥0 is of class KL when β(·, t) is of
class K for any t ≥ 0 and β(s, ·) is decreasing to 0 for
any s ≥ 0. The notation I stands for the identity map from
R≥0 to R≥0. For any sequence u = [u0, u1, . . . ] of length
d ∈ Z≥0 ∪ {∞} where ui ∈ Rm, i ∈ {0, . . . , d}, and any
k ∈ {0, . . . , d}, we use u|k to denote the first k elements of
u, i.e. u|k = [u0, . . . , uk−1] and u|0 = ∅ by convention. Let
f : R→ R, we use f (k) for the composition of function f
to itself k times, where k ∈ Z≥0, and f (0) = I. We use b·c
to denote the floor function. The Euclidean norm of a vector
x ∈ Rn is denoted by |x|.

II. PROBLEM STATEMENT

Consider the system

xk+1 = f(xk, uk), (1)

with state x ∈ Rn, input u ∈ U(x) ⊆ Rm, where U(x)
is the nonempty set of admissible inputs for state x, and
f : W → Rn where W := {(x, u) : x ∈ Rn, u ∈
U(x)}. We use φ(k, x,u|k) to denote the solution to system
(1) at time k ∈ Z≥0 with initial condition x and inputs
u|k = [u0, u1, . . . , uk−1], with the convention φ(0, x, ·) =
φ(0, x,∅) = x.

We study discounted finite-horizon costs of the form

Jγ,d(x,u) :=

d∑
k=0

γk`(φ(k, x,u|k), uk) (2)

where x ∈ Rn, u is a sequence of d + 1 admissible inputs,
` : W → R≥0, γ ∈ (0, 1] is the discount factor and d ∈
Z>0 ∪ {∞} is the horizon.

We assume that for any x ∈ Rn, γ ∈ (0, 1] and d ∈
Z>0 ∪ {∞}, there is a sequence u that minimizes cost (2), as
formalized next.

Standing Assumption (SA): For any x ∈ Rn, γ ∈ (0, 1] and
d ∈ Z>0 ∪ {∞}, there exists a sequence of d+ 1 admissible
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inputs u∗∗∗γ,d(x), called optimal input sequence, which minimizes
(2), i.e.

Jγ,d(x,u
∗∗∗
γ,d(x)) = min

u
Jγ,d(x,u) =: Vγ,d(x), (3)

where Vγ,d is the optimal cost function. �
Conditions to ensure the satisfaction of SA can be found

in [14]. According to SA, for any x ∈ Rn, γ ∈ (0, 1] and
d ∈ Z>0 ∪ {∞}, the set below is non-empty

U∗γ,d(x) := {u0 : ∃u1, . . . , ud ∈ Rm admissible such that

Vγ,d(x) = Jγ,d(x, [u0, . . . , ud])}.
(4)

Note that U∗γ,d(x) may be a set with multiple elements because
the optimal sequence may be non-unique for given x, γ and d.

We consider the scenario where system (1) is controlled in a
receding horizon fashion in the sense that, at each time instant
k ∈ Z≥0, the first element of the optimal sequence u∗∗∗γ,d(xk),
which may be non-unique, is applied to system (1). This leads
to the difference inclusion

xk+1 ∈ f(xk,U∗γ,d(xk)) =: F ∗γ,d(xk), (5)

where f(x,U∗γ,d(x)) is the set {f(x, u) : u ∈ U∗γ,d(x)}. We
denote by φ(k, x), with some abuse of notation, a solution to
(5) at time k ∈ Z≥0 with initial condition x ∈ Rn.

Our main objective is to analyse the stability and robustness
of system (5) using Lyapunov-based arguments. In particular,
we want to investigate the influence of the cost parameters γ and
d on stability. To this end, we make the following assumptions,
inspired by [8], on the stabilizability and detectability of system
(1) and cost function (2).

Assumption 1: There exist αV , αW ∈ K∞, continuous
functions W,σ : Rn → R≥0, αW : R≥0 → R≥0 continuous,
non-decreasing and zero at zero, such that the following
conditions hold.

(i) For any x ∈ Rn, γ ∈ (0, 1] and d ∈ Z>0 ∪ {∞},

Vγ,d(x) ≤ αV (σ(x)). (6)

(ii) For any x ∈ Rn, u ∈ U(x),

W (x) ≤ αW (σ(x)) (7)
W (f(x, u))−W (x) ≤ −αW (σ(x)) + `(x, u). (8)

�

Function σ in Assumption 1 serves as a measure of the state
and will be used to define stability. When investigating the
stability of the origin for instance, we typically take σ(x) = |x|,
σ(x) = |x|2, or σ(x) = xTPx with P a real symmetric,
positive definite matrix, for any x ∈ Rn. When interested in
stability of a set A ⊆ Rn, σ can be defined as σ = | · |A
for instance, where |x|A = inf{|z − x| : z ∈ A} for any
x ∈ Rn. Item (i) of Assumption 1 is related to the asymptotic
controllability (stabilizability) of system (1) with respect to σ,
see for more detail Section III in [8] and Lemma 1 in [20]. Item
(ii) of Assumption 1 is a detectability property of the stage
cost ` with respect to σ. To see this, consider the particular
case where W = 0 so that (8) reduces to αW (σ(x)) ≤ `(x, u).
Thus, when `(x, u) = 0, σ(x) = 0 since αW ∈ K∞.

Remark 1: A more general detectability assumption is made
in [8], [20], namely W (f(x, u)) −W (x) ≤ −αW (σ(x)) +
χ(`(x, u)) where χ ∈ K∞, instead of (8). It is possible
to obtain stability results in this case, at the price of more
technicalities. We have not addressed this case in the paper
to not compromise the clarity of our main results with the
technicalities involved in deriving this more general case. �

Remark 2: Throughout the text, we assume I−αW ◦ (αV +
αW )−1 ∈ K∞. This is without loss of generality, as, if it is not
the case, we can always upper-bound I−αW ◦ (αV +αW )−1

by I − α̃, which is of class K∞ for some suitable α̃ ∈ K∞,
according to Lemma B.1 in [13]. This substitution is enough
for the forthcoming stability analysis. �

III. STABILITY RESULTS

A. Lyapunov Properties

The satisfaction of Assumption 1 allows us to derive the
following Lyapunov properties, that we use to derive the main
stability result for system (5) afterwards.

Theorem 1: Suppose Assumption 1 holds. There exist
αY , αY , αY ∈ K∞ and, for any γ ∈ (0, 1] and d ∈ Z>0∪{∞},
there exists Yγ,d : Rn → R≥0 such that the following holds.

(i) For any x ∈ Rn,

αY (σ(x)) ≤ Yγ,d(x) ≤ αY (σ(x)). (9)

(ii) For any x ∈ Rn, v ∈ F ∗γ,d(x),

Yγ,d(v)−Yγ,d(x) ≤ 1

γ

(
−αY (σ(x))+Υ(Yγ,d(x), γ, d)

)
(10)

where Υ : R≥0 × (0, 1] × (Z>0 ∪ {∞}) → R≥0 is
defined in Table I, and is such that, for any s ≥ 0,
Υ(s, γ, d)→ 0 when γ → 1 and d→∞. �

Function Yγ,d plays the role of a Lyapunov function in
Theorem 1, and its expression as well as the expressions of
αY , αY , αY are given in Table I. Item (i) states that it is
positive definite and radially unbounded with respect to the set
{x : σ(x) = 0}, uniformly in γ and d. Item (ii) of Theorem
1 shows that Yγ,d strictly decreases along the solutions to (5)
up to a perturbative term Υ, which can be made as small as
desired by selecting γ close to 1 and d big. We stress that γ
has to be selected close to 1 and d has to be large in order for
Υ to be small in (10), which is consistent with previous works
on discounted infinite-horizon control [20] and undiscounted
finite-horizon control [8] where a similar Lyapunov inequality
is given. Theorem 1 is actually a generalization of Theorem 1
in [8] to discounted cost and of Theorem 1 in [20] to finite-
horizon. The perturbative term Υ differs from the corresponding
one in (5) in [8] when γ = 1, and from the one in item (b)
of Theorem 1 in [20] when d = ∞, because of the way the
Lyapunov analysis is carried out in the proof of Theorem 1,
see Section VI. The new analysis we propose is motivated by
the fact that it leads to different bounds, on d (and γ) under
which stability is preserved. This is discussed in more detail
in Section III-D.
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B. Main Result

We are ready to state the main stability result.
Theorem 2: Consider system (5) and suppose Assumption 1

holds. There exists β ∈ KL such that for any δ,∆ > 0, there
exist γ∗ ∈ (0, 1) and d∗ ∈ Z>0 such that for any γ ∈ (γ∗, 1],
d ∈ (d∗,∞], x ∈ {z ∈ Rn : σ(z) ≤ ∆}, any solution φ(·, x)
to system (5) satisfies, for all k ∈ Z≥0

σ(φ(k, x)) ≤ max{β(σ(x), k), δ}. (11)

�
Theorem 2 ensures a semiglobal practical stability property,

i.e. given any set of initial conditions of the form {z ∈ Rn :
σ(z) ≤ ∆} where ∆ > 0, and any (arbitrarily small) δ, we
can select γ and d such that (11) holds. The key inequality for
deriving γ∗ and d∗ can be found in the proof of Theorem 2,
see (34). A clear relationship between the choice of γ∗ and d∗

is difficult to draw for Theorem 2. Explicit bounds are provided
in the sequel by strengthening the conditions of Theorem 2,
which also allows us to ensure stronger stability properties.

Remark 3: Theorem 2 holds even when the horizon d of
cost (2) varies with time as long as it remains larger than
d∗ as defined in Theorem 2. While we omit the proof, this
remark implies some flexibility on the horizon, which could
be exploited when employing an online optimization scheme.
�

We know from [15] that it is essential to work with a
continuous Lyapunov function to endow the stability prop-
erties with some nominal robustness1. Here, function Yγ,d in
Theorem 2 serves as a Lyapunov function. To ensure it is
continuous, we need to guarantee that Vγ,d is continuous, since
Yγ,d = Vγ,d+W and W is continuous according to Assumption
1. Additional assumptions are needed for this purpose.

Assumption 2: The following properties hold.
(i) f and ` are continuous.

(ii) Either U is bounded, i.e. there exists a ball of finite
radius B such that U(x) ⊆ B for any x ∈ Rn, or for
each compact set C, η ∈ R, and d ∈ Z≥0, there exists
µ > 0 such that for any x ∈ C, all admissible sequences
of inputs u of length d + 1 satisfying Jγ,d(x,u) ≤ η
satisfy |uk| ≤ µ for k ∈ {0, . . . , d}. �

The next lemma ensures the continuity of Vγ,d when d is
finite.

Lemma 1: Consider system (1) and suppose Assumption 2
holds. For any γ ∈ (0, 1] and d ∈ Z>0, function Vγ,d is
continuous. �

When d is infinite, Theorem 3 in [20] provides conditions
under which Vγ,d is continuous.

C. Stronger Stability Properties

We first strengthen the conditions of Theorem 2 to ensure a
uniform semiglobal asymptotic stability property.

1As noted in [20], to apply Theorem 2.8 in [15] the set-valued mapping
F ∗γ,d in (5) also has to be such that F ∗γ,d(x) is nonempty and compact for any
x ∈ Rn. Non-emptiness follows from the Standing Assumption. Compactness
of F ∗γ,d proceeds from the compactness of U∗γ,d(x) (when f is continuous,
which is assumed to be the case in Lemma 1), which is a consequence of
the conditions of Lemma 1 and the continuity of Vγ,d proved in this lemma,
according to item (a) of Theorem 1.17 in [21].

Corollary 1: Suppose that Assumption 1 is satisfied and there
exist L > 0, āW ≥ 0, aW , āV > 0 such that αV (s) ≤ āV · s,
αW (s) ≤ āW · s, αW (s) ≥ aW · s for any s ∈ [0, L]. Let
∆ > 0, and select γ∗ ∈ (0, 1] and d∗ ∈ Z>0 such that(

1− aW
āY

γ∗

)d∗
āY L ≤ αW (L) (12)

1− γ∗ +
āV
aW

(
1− aW

āY

)d∗
<
aW
āY

, (13)

and for any (γ, d) ∈ (γ∗, 1]× (d∗,∞],

Υ(αY (∆), γ, d) ≤
(
1− γ

2

)
α̃Y (āY L), (14)

where āY := āV + āW , α̃Y := αW ◦ (αV + αW )−1 and Υ is
defined in Table I. Then, there exist β ∈ KL independent of
∆ such that, for any x ∈ {z ∈ Rn : σ(z) ≤ ∆}, any solution
φ(·, x) to system (5) satisfies, σ(φ(k, x)) ≤ β(σ(x), k) for all
k ∈ Z≥0. �

Corollary 1 ensures a uniform semiglobal asymptotic stability
property for set {x : σ(x) = 0}, i.e. given the set of initial
conditions {z ∈ Rn : σ(z) ≤ ∆} where ∆ is any fixed
strictly positive real number, we can select γ and d such that
(11) holds with δ = 0. Consistently with Theorem 2, to find a
suitable pair (γ∗, d∗), we have to take γ∗ close to 1 and d∗

large so that (12)-(14) hold.
Compared to Corollary 2 in [8] and Corollary 1 in [20],

where similar results are derived for infinite-horizon discounted
cost and finite-horizon undiscounted cost respectively, we
require inequality (12). This is not a limitation of our analysis,
but an omission of [20] and [8]. Indeed, f(s) ≤ f̄ s and
g(s) ≤ ḡs for s ∈ [0, L] where f̄ , ḡ > 0, does not imply
that f(g(s)) ≤ f̄ ḡs for s ∈ [0, L], as was used previously
in Corollary 1 of [20] and Corollary 2 of [8]. For a counter
example, consider f(s) := s2 and g(s) := 2s for L = 1.
We have f̄ = 1, ḡ = 2, yet f(g(s)) = 4s2 > 2s = f̄ ḡs for
s ∈ ( 1

2 , 1] which is a contradiction. Thus, a correct analysis
has to verify that every sub-part of the chain of functions is
inside a valid range. Fortunately, this does not lead to a loss
of generality of Corollary 1, only requiring an extra condition
on γ∗ and d∗, which can always be verified.

We can formulate stronger stability properties, namely uni-
form global exponential stability, when conditions of Corollary
1 hold with L =∞.

Corollary 2: Suppose that Assumption 1 is satisfied and
there exist āW ≥ 0, aW , āV > 0 such that αV (s) ≤ āV · s,
αW (s) ≤ āW · s, αW (s) ≥ aW · s for any s ≥ 0. Let γ∗, d∗

be such that

1− γ∗ +
āV
aW

(
1− aW

āV + āW

)d∗
<

aW
āV + āW

. (15)

Then, there exist K,λ > 0, such that for any γ ∈ (γ∗, 1],
d ∈ (d∗,∞], for any x ∈ Rn, the solution φ(·, x) to system
(5) satisfies σ(φ(k, x)) ≤ Kσ(x)e−λk for all k ∈ Z≥0. �

Corollary 2 ensures a uniform global exponential stability
property of {x : σ(x) = 0}. It also provides explicit conditions
on the pair (γ∗, d∗) under which stability is guaranteed. Indeed,
we either first fix γ∗ ∈ (γ̄, 1] with γ̄ = 1− aW

āV +āW
and then

select d∗ such that (15) holds, or we first fix d∗ > d̄ with
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Table I: Expressions of the functions used in Theorem 1

Yγ,d := Vγ,d +W
αY := αW
αY := αV + αW
αY := αW

Υ(s, γ, d) :=


(1− γ)s+ γdαV ◦ α−1

Y ◦
(

I−αY ◦α
−1
Y

γ

)(d)

(s) when γ ∈ (0, 1) and d ∈ Z>0

αV ◦ α−1
Y ◦

(
I− αY ◦ α−1

Y

)(d)
(s) when γ = 1 and d ∈ Z>0

(1− γ)s when γ ∈ (0, 1) and d =∞

d̄ = b ln(āV (āV +āW )/a2
W )

− ln(1− aW
āV +āW

)
c and select γ∗ such that (15) holds.

The resulting pair (γ∗, d∗) is a suitable candidate for (15) by
construction.

D. Comparison of the conditions on γ and d with existing
results

It is difficult to compare the conditions on γ and d in the
general case of Theorem 2 with those in [8] when γ = 1 and
those in [20] when d =∞. For this reason, in the next lemma,
we compare the bounds derived from Corollary 2 either when
γ = 1 or d =∞ with those given in Corollary 3 in [8], which
we denote2 as d[8], and in Corollary 2 in [20], which we denote
as γ[20], respectively.

Lemma 2: Under the conditions of Corollary 2, the following
holds.

(i) When āW < aW , γ̄ < γ[20] := āV
āV +aW

where γ̄ =
1 − aW

āV +āW
is the bound on γ given by (15) when

d =∞.
(ii) d̄=− ln d[8]/ ln

(
1− aW

āV +āW

)
where3d[8]:=

āV (āV +āW )
a2
W

and d̄=−
ln
(
āV (āV +āW )

a2
W

)
ln
(

1− aW
āV +āW

) is the bound on d given by

(15) when γ = 1. �

Item (i) of Lemma 2 implies that the minimum discount
factor γ̄ given by Corollary 2 when d =∞ is strictly smaller
than the bound found in Corollary 2 from [20] when αW < αW .
Item (ii) of Lemma 2 provides a direct relationship between the
estimate horizon d[8] of Corollary 3 from [8] and our minimum
horizon estimate d̄. It can therefore be used to infer which
bound is tighter.

We refer to our preliminary work [7] for the illustration of
Lemma 2. There, we use Lemma 2 to the examples found
in [8], [20] and obtained from 36% to 63% improvement in
the estimation on the lower bound on d for [8] and a 6%
improvement on the bound on γ compared to [20].

IV. RELATIONSHIPS BETWEEN THE OPTIMAL VALUE
FUNCTIONS

As explained in the introduction, often the goal is to minimize
either a discounted infinite-horizon cost or an undiscounted
finite-horizon cost, but the mentioned algorithms minimize
a finite-horizon discounted cost instead. In this context, it is

2We make a change of variable N − 1 = d to align our cost function Jγ,d
with the one in [8].

3There is a slight abuse of notation, since d̄ and d[8] are supposed to be
integers.

natural to ask what is the relationship between the cost we
originally aim at minimizing, i.e. the infinite-horizon discounted
one, and the one we actually minimize, i.e. the finite-horizon
one. The next theorem provides relationships between these
two costs, as well as between the discounted finite-horizon
cost and the undiscounted finite-horizon cost. These results are
obtained by exploiting Assumption 1.

Theorem 3: Let γ ∈ (0, 1], d ∈ Z>0, x ∈ Rn and suppose
that Assumption 1 holds. Then

Vγ,d(x) ≤Vγ,∞(x) ≤Vγ,d(x) + γdvγ,d(x) (16a)

Vγ,d(x) ≤V1,d(x) ≤Vγ,d(x) + (1− γ)

d∑
k=1

vγ,k(x), (16b)

where vγ,k(x) := αV ◦ α−1
Y ◦

(
I−αY ◦α−1

Y

γ

)(k)

◦ αY (σ(x)) for
k ∈ {1, . . . , d} and αY , αY , αY ∈ K∞ come from Theorem
1, see Table I. �

Theorem 3 provides explicit computable bounds on Vγ,∞
(and V1,d) based on Vγ,d(x), γ, d and σ(x), which can be
used to evaluate the mismatch induced by the minimization of
a finite-horizon discounted cost instead of an infinite-horizon
discounted one (and an undiscounted finite-horizon one). We
expect that the inequalities in (16) become equality in the limit
case, i.e. when d → ∞ in (16a) and γ → 1 in (16b). This
is obviously true for (16b). The case of (16a) is addressed in
the next lemma, which indeed ensures that Vγ,d(x) tends to
Vγ,∞(x) when d→∞, for γ sufficiently close to 1.

Lemma 3: Let ∆ > 0, x ∈ {z ∈ Rn : σ(z) ≤ ∆}. Suppose
Assumption 1 holds and consider αY , αY , αY from Theorem
1. For γ ∈ (1 − αY (∆)

αY (∆) , 1], Vγ,d(x) + γdvγ,d(x) → Vγ,∞(x)

when d→∞, where vγ,d(x) = αV ◦ α−1
Y ◦

(
I−αY ◦α−1

Y

γ

)(d)

◦
αY (σ(x)). �

When comparing (16a) with the corresponding error bounds
usually found in approximate dynamic programming [2], we
observe significant improvement when γ is close to 1. Indeed,
in algorithms like value iteration, it is commonly assumed that
`(x, u) is bounded, e.g. `(x, u) ∈ [0, 1] for any (x, u) ∈ W ,
which is not the case here. This property is used to derive that

Vγ,∞(x) ≤ Vγ,d(x)+
∞∑
k=d

γk ≤ Vγ,d(x)+ γd

1−γ . The term γd

1−γ ,

which serves as a near-optimality bound, clearly diverges to
infinity when γ → 1. This is not the case with the bound in
(16a), which is small whenever d is large, or when σ(x) is
small, even when γ is close to 1.

The work in [10] also provides relationship between the
undiscounted infinite-horizon optimal cost and the finite-
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horizon one. As explained in the introduction, the results of this
section rely on different assumptions, namely we do not rely
on a relaxed dynamic programming property (see Proposition
2.2 and Assumption 4.2 in [10]), but on stabilizability and
detectability properties. Furthermore, we address discounted
costs contrary to [10].

Finally, simpler relationships between the optimal value
functions can be obtained under the conditions of Corollary 2,
as stated next.

Corollary 3: Let d ∈ Z>0, x ∈ Rn and suppose that the
conditions of Corollary 2 are satisfied. The following hold.

(i) For any γ ∈ (0, 1],

Vγ,d(x) ≤ Vγ,∞(x) ≤ Vγ,d(x) + v̂d(x) (17)

where v̂d(x) := āV (āV +āW )
aW

(
1− aW

āV +āW

)d
σ(x).

(ii) For any γ ∈ (1− aW
āV +āW

, 1],

Vγ,d(x) ≤ V1,d(x) ≤ Vγ,d(x) + Sv(x) (18)

where Sv(x) := (1− γ) āV (āV +āW )2

aW

(
1− aW

āV +āW

)
aW−(1−γ)(āV +āW )σ(x).

�
The mismatch v̂d(x) between Vγ,d(x) and Vγ,∞(x) in (17)

is linear in σ(x) and no longer depends on γ as in (16a).
Furthermore, v̂d(x)→ 0 as d→∞ since 1− aW

āV +āW
∈ (0, 1)

as shown in the proof of Corollary 1. Similarly, the mismatch
Sv(x) between Vγ,d(x) and V1,d(x) is linear in σ(x) and no
longer depends on d as in (16b). Moreover, Sv(x) → 0 as
γ → 1 for any x ∈ Rn.

V. NEAR-OPTIMAL SEQUENCE OF INPUTS

In this section, we explore whether an approximated solver
for optimal cost (3) preserves our previous results in some
sense. Hence, we study the case the available inputs sequence
is only near-optimal for the discounted finite-horizon cost in
the following sense.

Assumption 3: There exists a continuous function η :
[0,+∞)× P → R≥0, where P := ((0, 1]× Z≥0) ∪ ((0, 1)×
(Z≥0 ∪{+∞}) with η(·, γ, d) ∈ K∞ for any (γ, d) ∈ P , such
that Vγ,d(x) ≤ V̂γ,d(x) ≤ Vγ,d(x) + η(ε, γ, d). �

Assumption 3 means that, for any x ∈ Rn and (γ, d) ∈
P , we know a near-optimal sequence of admissible inputs
ûγ,d(x) where η(ε, γ, d) is the near-optimality bound. The
constant error η can be controlled by choosing parameter ε > 0
depending on (γ, d) as η(·, γ, d) is of class K∞. Assumption 3
covers near-optimality bounds of the form η(ε, γ, d) = 1−γd

1−γ ε
where ε is related to approximation errors; such bounds are
commonly found in the approximate dynamic programming
literature, see [2]. The function η in Assumption 3 takes value
in R≥0 ×P , and not in R≥0 × [0, 1]× (Z≥0 ∪ {+∞}) as we
might expect, to cover this type of bounds, which explodes
when (γ, d) → (1,∞). Compared to [11], where stability is
analysed for control inputs generated by approximate value
iteration, we: (i) study stability of a generic closed set, and
not only of the origin; (ii) do not need the explicit knowledge
of a globally stabilizing policy; (iii) address discounted costs;
(iv) the stage cost is not necessarily quadratic; (v) allow for a

constant error η(ε, γ, d), which therefore does not depend on
x.

We write system (1) in closed-loop with a near-optimal
sequence of inputs as

xk+1 ∈ f(xk, Ûγ,d(xk)) =: F̂γ,d(xk), (19)

and we denote by φ̂(k, x) a solution to (19) at time k ∈ Z≥0

with initial condition x ∈ Rn.
The next theorem provides conditions under which the

stability of system (5) follows.
Theorem 4: Consider system (19) and suppose Assumptions

1 and 3 hold. There exists β ∈ KL such that for any δ,∆ > 0,
there exist (γ∗, d∗) ∈ (0, 1)× Z≥0 such that for any (γ, d) ∈
Pγ∗,d∗ := ((γ∗, 1] × (d∗,∞]) ∩ P , there exists ε∗ > 0, such
that for any ε ∈ [0, ε∗) and x ∈ {z ∈ Rn : σ(z) ≤ ∆}, any
solution φ̂(·, x) to system (19) satisfies

σ(φ̂(k, x)) ≤ max{β(σ(x), k), δ} ∀k ∈ Z≥0. (20)

Moreover, when η(ε, γ, d) is non-increasing in γ and d, given
δ,∆ > 0, there exists (ε∗, γ∗, d∗) ∈ R>0 × (0, 1)× Z≥0 such
that for any (ε, γ, d) ∈ [0, ε∗)× Pγ∗,d∗ , (20) holds. �

Theorem 4 ensures a semiglobal practical stability property
where the adjustable parameters are not only γ, d as before, but
also ε. We stress that ε∗, the upper-bound on ε, has to be chosen
as a function of (γ, d) in general, not (γ∗, d∗). This is due to
the fact that the error term η(ε, γ, d) is potentially increasing
and unbounded in γ and d. This is the case for instance when
η(ε, γ, d) = 1−γd

1−γ ε, which explodes as (γ, d) → (1,∞) as
already mentioned. We are thus forced to adapt ε to (γ, d).
This is no longer the case when η(ε, γ, d) is non-increasing in
γ and d, as stated in the last part of Theorem 4.

While the determination of the pair (γ∗, d∗) such that (20)
holds is as difficult as in Theorem 2, the next lemma states that
any pair (γ∗, d∗) such that (20) holds for given (δ,∆), ensures
that (11) holds with tuple (γ∗, d∗, δ,∆), but the reverse may
not be true.

Lemma 4: Let (γ∗, d∗, δ,∆) be such that Theorem 4 holds
for some η and ε∗. Then Theorem 2 is verified with the same
tuple (γ∗, d∗, δ,∆). �

Lemma 4 is useful in practice to have lower bounds on γ∗

and d∗ when the considered algorithm produces near-optimal
inputs according to Assumption 3, as illustrated in the next
section.

Regarding optimality, the following corollary provides a
relationship between the infinite-horizon discounted optimal
cost Vγ,∞(x) and V̂γ,d(x).

Corollary 4: Suppose that Assumption 1 and 3 hold, let
ε ≥ 0, (γ, d) ∈ P and x ∈ Rn and consider vγ,d(x) defined
in Theorem 3. The following holds.

V̂γ,d(x)− η(ε, γ, d) ≤ Vγ,∞(x) ≤ V̂γ,d(x) + γdvγ,d(x) (21)

�

VI. ILLUSTRATIVE EXAMPLE

We consider the model of an inverted pendulum discretized
by Euler scheme with sampling period T > 0,

x+
1 = x1 + Tx2

x+
2 = x2 + T (a sin(x1)− bx2 + cu) (22)
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where x1 ∈ R is the angular position of the pendulum, with
x1 = 0 being the upper-position, x2 ∈ R the angular velocity
and u ∈ R is a controllable torque at the rotation axis. The
constants a, b, c > 0 are related to the mass, the dissipation
and the motor gain, respectively. We have (x1, x2) = x ∈ R2

and u ∈ U(x) = R. Let σ(x) = |x1| + |x2| and consider
cost (2) with `(x, u) = σ(x) + r|u| for some r > 0, for any
(x, u) ∈ R2×R. First, we verify that SA holds by applying The-
orem 1 and item d3) of Theorem 2 in [14]. We have that items a)
to c) of Theorem 1 in [14] hold. Item d3) of Theorem 2 in [14]
is satisfied since |u| ≤ `(x, u), thus |u| → ∞, `(x, u) → ∞
for any x ∈ R2. For item e) of Theorem 1 in [14], let x ∈ R2

and consider the infinite sequence v(x) := { 1
c (−a sin(x1) +

bx2 − x1+Tx2

T 2 ), 1
c (−a sin(x1 + Tx2) + bx1+Tx2

T ), 0, . . .}. It
follows that φ(1, x, v(x)|1) = (x1 + Tx2,−x1+Tx2

T ), and
φ(k, x, v(x)|k) = 0 for k ≥ 2. For any γ ∈ (0, 1], we have

Jγ,∞(x, v(x))

= |x1|+ |x2|+ r|1
c

(−a sin(x1) + bx2 −
x1 + Tx2

T 2
)|

+ γ(|x1 + Tx2|+ |
x1

T
+ x2|

+ r|1
c

(−a sin(x1 + Tx2) + b
x1 + Tx2

T
)|)

≤ |x1|+ |x2|+
r

c
(a|x1|+ b|x2|+

1

T 2
|x1|+

1

T
|x2|)

+ γ(|x1|+ T |x2|+
1

T
|x1|+ |x2|

+
r

c
(a(|x1|+ T |x2|) + b(

1

T
|x1|+ |x2|))

≤ θ1(γ, r, T )|x1|+ θ2(γ, r, T )|x2|,

with θ1(γ, r, T ) := 1 + ra
c + r

cT 2 + γ(1 + 1
T + ra

c + rb
cT ) and

θ2(γ, r, T ) := 1 + rb
c + r

cT + γ(T + 1 + rT
c + rb

c ), which is
finite for all T > 0. Thus, Theorem 2 of [14] is verified and SA
holds. Furthermore, since J1,∞(x, v(x)) ≤ θ1(1, r, T )|x1| +
θ2(1, r, T )|x2| we verify item (i) of Assumption 1 is satisfied
with αV = max{θ1(1, r, T ), θ2(1, r, T )}I. From `(x, u) ≥
`(x, 0) = σ(x), item (ii) of Assumption 1 is verified with
W = αW = 0 and αW = I.

In the following, we take a = b = c = 1, with time-step
T = 1 and r = 1. In this case, αV = 7I. In view of Corollary
2, we find d̄ =

⌊
0−ln 72

ln 6−ln 7

⌋
= 25 and γ̄ = 6

7 , thus global
exponential stability is guaranteed for any pair (γ∗, d∗) with
γ∗ ≥ γ̄ and d∗ ≥ d̄ when the optimal sequence of inputs is
applied to system (22). This analysis is of course conservative,
and a different derivation of αV might provide different bounds
on (γ∗, d∗).

Because we do not know how to compute optimal sequences
of inputs, we use a scheme based on approximate value
iteration to generate the inputs. This scheme relies on a
simple finite difference approximation, with N = 332 points
equally distributed in [−π, π]× [−π, π] for the state space, and
101 quantized inputs in [−10, 10] centered at 0. As a result,
Assumption 3 holds for some η, which can be derived by
adapting the results from [4] for aggregation4 Per Theorem 4,
system (22) controlled by such scheme satisfies (20). Figure

4The detailed derivations are not provided for space reasons.

1 provides plots of σ(x) for the initial condition (3, 0) for
different values of (γ, d). As expected, when γ or d are too
small, σ(φ̂(·, x)) does not converge to a "small" neighborhood
of the origin, where we recall that φ̂(·, x) is the solution of (19)
controlled by the near-optimal sequence. To analyse the impact
of (γ, d) on the closed-loop system, we consider three initial
conditions, namely (π, 0), (π2 ,

π
2 ) and ( π10 , 0.1), for different

pairs (γ, d) and we have checked numerically whether the state
measure converges to the set S := {z ∈ R2 : σ(z) ≤ 0.5} in
11 steps, and that it stays in S for at least 40 steps. The obtained
results are summarized in Fig. 2. As expected by Theorem 4,
we see in Fig. 2 that both (γ, d) have to be sufficiently large
for σ(φ̂(·, x)) to converge close to the origin. Furthermore,
Theorem 4 suggests that stability may be lost if ε is not small
enough for given (γ, d), this is not apparent for our test case
with N = 332. However, by reducing the number of points
for the state space from N = 332 to N = 312, we observe a
degradation of our convergence test for γ to close to 1 and
d too large, see Fig. 3. This further illustrates the statement
made in Theorem 4 in extension to those made in Theorem
2. Namely, that pair (γ, d) cannot be simply taken close to
(1,∞), as they have a role in addition to ε in keeping the error
term η in check.

Figure 1: σ(φ̂(·, x)) for 4 different pairs (γ, d) and x = (3, 0).

Figure 2: Convergence testing of 1000 sample pairs (γ, d),
N = 332. Symbol ◦ denotes convergence to S, while × the
converse.
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Figure 3: Convergence testing of 1000 sample pairs (γ, d),
N = 312. Symbol ◦ denotes convergence to S, while × the
converse.

VII. PROOFS

A. Proof of Theorem 1
We distinguish three cases depending on the value of γ and

d.
Case 1: γ ∈ (0, 1) and d ∈ Z>0.
Let γ ∈ (0, 1), d ∈ Z>0, x ∈ Rn and v ∈ F ∗γ,d(x). There
exists [u∗0, u

∗
1, . . . , u

∗
d] = u∗∗∗γ,d(x) such that v = f(x, u∗0) and

u∗∗∗γ,d(x) is an optimal input sequence for system (1) with cost
(2). Hence Vγ,d(x) = Jγ,d(x,u

∗∗∗
γ,d(x)).

The proof can be summarized as follows. We start by
showing item (ii) of Theorem 1. For this, we first upper-bound
Vγ,d(v) using Bellman equation. We then derive a preliminary
upper-bound on Vγ,d(v) − Vγ,d(x). Afterwards, We define
Yγ,d := Vγ,d + W where W comes from Assumption 1 and
we derive the desired result.

Since stage cost ` is nonnegative and in view of item (i) of
Assumption 1,

`(x, u∗0) ≤ Vγ,d(x) ≤ αV (σ(x)). (23)

Let j ∈ {1, . . . , d}. Consider the sequence
û := [u∗1, u

∗
2, . . . , u

∗
d−j , ūj ] where ūj :=

u∗γ,j(φ(d− j + 1, x,u∗∗∗γ,d(x)|d−j+1)), u∗∗∗γ,d(x)|d−j+1 =
[u∗0, . . . , u

∗
d−j ] and φ denotes the solution of system (1).

The sequence û consists of the first d − j elements
of u∗∗∗γ,d(x) after u∗0, followed by an optimal input
sequence of length j + 1 for cost Jγ,d−j at state
φ(d − j + 1, x,u∗∗∗γ,d(x)|d−j+1). Note that the sequence ūj
exist and minimizes Jγ,j(φ(d− j + 1, x,u∗∗∗γ,d(x)|d−j+1), ūj)
from SA. From the definition of cost Jγ,d in (2) and
Vγ,d in (3), Vγ,d(v) ≤ Jγ,d(v, û) = Jγ,d−j−1(v, û|d−j) +
γd−jJγ,j(φ(d − j, v, û|d−j), ūj). By definition of ūj ,
Vγ,d(v) ≤

∑d−j−1
k=0 γk`(φ(k, v, û|k), ûk) + γd−jVγ,j(φ(d −

j, v, û|d−j)). For any k ∈ {0, . . . , d}, φ(k, v, û|k) =
φ(k + 1, x, [u∗0, û]|k+1) = φ(k + 1, x,u∗∗∗γ,d(x)|k+1).
Similarly, since j ∈ {1, . . . , d} implies 0 ≤ d − j < d,
φ(d− j, v, û|d−j) = φ(d− j + 1, x,u∗∗∗γ,d(x)|d−j+1). Thus

Vγ,d(v) ≤
d−j−1∑
k=0

γk`(φ(k + 1, x,u∗∗∗γ,d|k+1), [u∗∗∗γ,d(x)]k+1)

+ γd−jVγ,j(φ(d− j + 1, x,u∗∗∗γ,d(x)|d−j+1)),
(24)

where [u∗∗∗γ,d(x)]k+1 = u∗k+1. Using the following shorthand
notation, we define the optimal solution φ∗k := φ(k, x,u∗∗∗γ,d(x))
and the optimal stage cost `∗k := `(φ∗k, u

∗
k) for k ∈ {0, . . . , d}.

Hence,

Vγ,d(v) = Vγ,d(φ
∗
1) ≤

d−j−1∑
k=0

γk`∗k+1 + γd−jVγ,j(φ
∗
d−j+1).

(25)
Furthermore from the definition of Vγ,d(x),

Vγ,d(x) =

d∑
k=0

γk`∗k (26)

and

Vγ,d(x)− `∗0 ≥ γ
d−j−1∑
k=0

γk`∗k+1. (27)

Subtracting (26) from (25), it follows Vγ,d(v) − Vγ,d(x) ≤
−
∑d
k=0 γ

k`∗k +
∑d−j−1
k=0 γk`∗k+1 + γd−jVγ,j(φ

∗
d−j+1) =

−`∗0 + (1− γ)
∑d−j−1
k=0 γk`∗k+1 + γd−jVγ,j(φ

∗
d−j+1). In view

of (27), we have
d−j−1∑
k=0

γk`∗k+1 ≤
Vγ,d(x)−`∗0

γ , hence

Vγ,d(v)− Vγ,d(x)

≤ −`∗0 −
1− γ
γ

`∗0 +
1− γ
γ

Vγ,d(x) + γd−jVγ,j(φ
∗
d−j+1)

= −`
∗
0

γ
+

1− γ
γ

Vγ,d(x) + γd−jVγ,j(φ
∗
d−j+1). (28)

From item (i) of Assumption 1,

Vγ,d(v)− Vγ,d(x)

≤ −`
∗
0

γ
+

1− γ
γ

Vγ,d(x) + γd−jαV (σ(φ∗d−j+1))

=
1

γ

(
− `∗0 + (1− γ)Vγ,d(x) + γd−j+1αV (σ(φ∗d−j+1))

)
.

Adding and subtracting 1−γ
γ W (x),

Vγ,d(v)− Vγ,d(x)

≤ 1

γ

(
− `∗0 − (1− γ)W (x) + (1− γ)(Vγ,d(x) +W (x))

+ γd−j+1αV (σ(φ∗d−j+1))
)
. (29)

Let Yγ,d = Vγ,d +W . In view of item (ii) of Assumption 1
and since γ ≤ 1, γW (v)−W (x) ≤ −αW (σ(x))+`∗0. Dividing
everything by γ and since 1

γ = 1 + 1−γ
γ , W (v) −W (x) −

1−γ
γ W (x) ≤ −αW (σ(x))

γ +
`∗0
γ . Therefore,

W (v)−W (x) ≤ 1

γ

(
−αW (σ(x))+`∗0 +(1−γ)W (x)

)
. (30)

In view of (29) and (30),

Yγ,d(v)− Yγ,d(x)

≤ 1

γ

(
− `∗0 − (1− γ)W (x) + (1− γ)Yγ,d(x)

+ γk
∗
αV (σ(φ∗k∗))− αW (σ(x)) + `∗0 + (1− γ)W (x)

)
=

1

γ

(
− αW (σ(x)) + (1− γ)Yγ,d(x) + γk

∗
αV (σ(φ∗k∗))

)
(31)
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where k∗ := d−j+1. A major difficulty compared to [8] is how
to bound σ(φ∗k∗) in (31) because of the discount factor. For this
purpose, we use Theorem 5 given in the Appendix. From item
(ii) of Theorem 5, it follows that, for any k ∈ {0, . . . , d− 1},

Yγ,d−(k+1)(φ
∗
k+1)− Yγ,d−k(φ∗k)

≤ 1

γ

(
− αY (σ(φ∗k)) + (1− γ)Yγ,d−k(φ∗k)

)
.

We write

Yγ,d−(k+1)(φ
∗
k+1) ≤

−αY ◦ α−1
Y (Yγ,d−k(φ∗k)) + Yγ,d−k(φ∗k)

γ
(32)

where αY = αV + αW and αY = αW , since αY (σ(φ∗k)) ≥
αY ◦ α−1

Y (Yγ,d−k(φ∗k)), which follows from item (i) of
Theorem 5. As explained in Remark 2, we can assume
I − αY ◦ α−1

Y ∈ K∞ without loss of generality. Thus,
starting from Yγ,d(x) and proceeding by iteration, we have

Yγ,d−k∗(φ
∗
k∗) ≤

(
I−αY ◦α−1

Y

γ

)(k∗)

(Yγ,d(x)). We apply item (i)
of Theorem 5 and conclude that

σ(φ∗k∗) ≤ α−1
Y

((
I− αY ◦ α−1

Y

γ

)(k∗)

(Yγ,d(x))

)
. (33)

It follows from (31) and (33) that

Yγ,d(v)− Yγ,d(x)

≤ 1

γ

[
− αW (σ(x)) + (1− γ)Yγ,d(x)

+ γk
∗
αV ◦ α−1

Y (

(
I− αY ◦ α−1

Y

γ

)(k∗)

(Yγ,d(x)))

]
.

Thus, equation (10) is verified with αY = αW ∈ K∞ and

Υ(s, γ, k∗) = (1− γ)s+ γk
∗
αV ◦α−1

Y

( ( I−αY ◦α−1
Y

γ

)(k∗)

(s)
)
.

Recall that j is freely selected in {1, . . . , d}, as a result so is
k∗ ∈ {1, . . . , d}. Note that Υ(s, γ, d) ≥ 0 for any s ≥ 0, as
0 ≤ I− αY ◦ α−1

Y , which follows from αY = αY ≤ αY . Let

s ≥ 0, consider (1− γ)s+ αV

(
α−1
Y (
(

I−αY ◦α−1
Y

γ

)(d)

(s))
)
≥

Υ(s, γ, d). Note that s− αY ◦ α−1
Y (s) < s if s 6= 0. Indeed,

suppose s− αY ◦ α−1
Y (s) = s and s 6= 0, this is only possible

if αY ◦ α−1
Y (s) = 0, we attain a contradiction. Hence, s −

αY ◦ α−1
Y (s) < s when s > 0, and zero at zero. Therefore

(1− γ)s+ αV

(
α−1
Y (
(

I−αY ◦α−1
Y

γ

)(d)

(s))
)
→ 0 when γ → 1

and d → ∞. Finally, recall that 0 ≤ Υ(s, γ, d). It follows,
by the sandwich rule, that Υ(s, γ, d) → 0 when γ → 1 and
d→∞. Hence, item (ii) of Theorem 1 holds.

In view of Assumption 1, Yγ,d ≤ αY (σ(x)) with
αY = αV + αW ∈ K∞. From item (ii) of Assumption 1, we
have W (x) ≥ αW (σ(x))− `(x, u∗0). Associated with (23), it
follows Yγ,d ≥ αW (σ(x))− `(x, u∗0) + `(x, u∗0) = αW (σ(x)).
Thus αY = αW ∈ K∞. Item (i) of Theorem 1 is satisfied.

Case 2: γ = 1 and d ∈ Z>0

By following the steps of Case 1 with γ = 1, the desired
result is obtained.

Case 3: γ ∈ (0, 1) and d =∞
Let γ ∈ (0, 1), x ∈ Rn and v ∈ F ∗γ,∞(x). From
Bellman equation, Vγ,∞(x) = `∗0 + γVγ,∞(v), thus
Vγ,∞(v) =

−`∗0+Vγ,∞(x)
γ . By following the steps of Case 1,

the desired result is obtained.

B. Proof of Theorem 2

Let ∆, δ > 0, d ∈ (d∗,∞] and γ ∈ (γ∗, 1], where γ∗, d∗

are defined in the following, x ∈ Rn be such that σ(x) ≤ ∆,
v ∈ F ∗γ,d(x). There exists u∗∗∗γ,d(x) with first element u∗0 such
that v = f(x, u0) according to SA.

Define ∆̃ := αY (∆), δ̃ :=
(
I− α̃Y

2

)−1

◦ αY (δ), α̃Y :=

αY ◦ αY −1, where5 αY , αY , αY come from Theorem 1. Let
(γ∗, d∗) such that the following holds for all d′ > d∗, γ′ ∈
(γ∗1],

∀ s ∈ [δ̃, ∆̃], Υ(s, γ′, d′) ≤
(

1− γ′

2

)
α̃Y (s), (34)

where Υ comes from Theorem 1. Such a pair (γ∗, d∗) always
exists for the following reason. Consider the function ψ :

(γ, d) 7→ max
s∈[δ̃,∆̃]

(1 − γ)s + αV ◦ α−1
W ◦

(
I−αY ◦α−1

Y

γ

)(d)

(s).

Clearly, Υ(s, γ, d) ≤ ψ(γ, d) for any s ∈ [δ̃, ∆̃] in view of the
definition of Υ, and recall from Theorem 1 that Υ(s, γ, d) ≥ 0,
thus 0 ≤ Υ(s, γ, d) ≤ ψ(γ, d). As explained in the proof of
Theorem 1, I − αY ◦ α−1

Y < I on R>0, hence ψ(γ, d) → 0
as (γ, d) → (1,∞). Thus, from the definition of the limit,
there exists a pair (γ∗, d∗) in (0, 1)×Z>0 such that ψ(γ, d) <
1
2 α̃Y (δ̃) for any (γ, d) ∈ (γ∗, 1] × (d∗,∞). As a result, for
any s ∈ [δ̃, ∆̃], γ ∈ (γ∗, 1] and d ∈ (d∗,∞), Υ(s, γ, d) ≤
ψ(γ, d) < 1

2 α̃Y (δ̃). Meanwhile, the right hand side of (34) is
bounded below by 1

2 α̃Y (δ̃), since α̃Y ∈ K∞, s ∈ [δ̃, ∆̃] and
γ ∈ (0, 1], thus Υ(s, γ, d) ≤ 1

2 α̃Y (δ̃) ≤
(
1− γ

2

)
α̃Y (s) and

(34) holds.
In view of item (ii) of Theorem 1 and since αY (σ(x)) ≥

αY ◦ α−1
Y (Yγ,d(x)) according to item (i) of Theorem 1,

Yγ,d(v)− Yγ,d(x) ≤ 1

γ

(
− α̃Y (Yγ,d(x)) + Υ(Yγ,d(x), γ, d)

)
.

(35)
Since σ(x) ≤ ∆, Yγ,d(x) ≤ αY (σ(x)) ≤ αY (∆) = ∆̃.

Therefore, when Yγ,d(x) ≥ δ̃, we derive from (34) that
−α̃Y (Yγ,d(x)) + Υ(Yγ,d(x), γ, d) ≤ −γ2 α̃Y (Yγ,d(x)). Thus,
from (35),

Yγ,d(v)− Yγ,d(x)

≤ 1

γ

(
− α̃Y (Yγ,d(x)) + Υ(Yγ,d(x), γ, d)

)
≤ − 1

2 α̃Y (Yγ,d(x)). (36)

Consider now Yγ,d(x) ∈ [0, δ̃). From the definition of Υ, note
that Υ(·, γ, d)− (1− γ)I ∈ K∞ or zero. It follows then that
γI−α̃Y +Υ(·, γ, d) ∈ K∞. Indeed, γI−α̃Y +Υ(·, γ, d) = γI−

5 Note since I − αY = I − αY ◦ (αV + αW )−1 ∈ K∞ as assumed
without loss of generality in Remark 2. Thus I− αY

2
= I−αY + αY

2
∈ K∞,

hence
(
I− αY

2

)−1
∈ K∞ and δ̃ is well defined.
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α̃Y +Υ(·, γ, d)−(1−γ)I+(1−γ)I = I−α̃Y +Υ(·, γ, d)−(1−
γ)I, which is in K∞ since I− α̃Y ∈ K∞ as assumed without
loss of generality in Remark 2 and Υ(·, γ, d)− (1−γ)I ∈ K∞
or zero as noted before. Therefore, for Yγ,d(x) ∈ [0, δ̃) and in
view of (35),

Yγ,d(v) ≤ 1

γ

(
γYγ,d(x)− α̃Y (Yγ,d(x)) + Υ(Yγ,d(x), γ, d)

)
Yγ,d(v) ≤ 1

γ

(
γδ̃ − α̃Y (δ̃) + Υ(δ̃, γ, d)

)
.

From (34), we derive

Yγ,d(v) ≤ 1

γ

(
γδ̃ − α̃Y (δ̃) +

(
1− γ

2

)
α̃Y (δ̃)

)
Yγ,d(v) ≤ 1

γ

(
γδ̃ − γ

2
α̃Y (δ̃)

)
Yγ,d(v) ≤ δ̃ − α̃Y (δ̃)

2
.

Given the definition of δ̃,

Yγ,d(v) ≤
(
I− α̃Y

2

)
(δ̃) = αY (δ). (37)

Thus, whenever Yγ,d(x) ≤ αY (δ), Yγ,d(v) ≤ αY (δ) follows.
Indeed, if Yγ,d(x) ∈ [δ̃, ∆̃], Yγ,d(v) ≤ Yγ,d(x) ≤ αY (δ)

according to (36), and if Yγ,d(x) ∈ [0, δ̃), we deduce
Yγ,d(v) ≤ αY (δ) according to (37). Hence the set {z ∈ Rn :
Yγ,d(z) ≤ αY (δ)} is forward invariant6 for system (5).

We then invoke the same arguments as in the proof of
Theorem 2 in [20]. Hence, there exists β̃ ∈ KL such that for
any k ∈ Z≥0 and solution φ(k, x) to system (5),

Yγ,d(φ(k, x)) ≤ max{β̃(Yγ,d(x), k), αY (δ)}. (38)

Finally, using αY (σ(x)) ≤ Yγ,d(x) ≤ αY (σ(x)), we obtain

σ(φ(k, x)) ≤ max{α−1
Y

(
β̃(αY (σ(x)), k)

)
, δ}. (39)

Thus (11) holds with β(s, k) = α−1
Y

(
β̃(αY (s), k)

)
.

C. Proof of Lemma 1
The proof consists in showing that the conditions of Theorem

1.17 in [21] are satisfied by Vγ,d. Let γ ∈ (0, 1], and d ∈ Z>0.
Since U(x) is non-empty for all x and Jγ,d is a finite sum, Jγ,d
is trivially finite for all x and u, Jγ,d is thus a proper function
according to the definition in Section 1.A of [21]. Moreover,
Jγ,d is simply the composition, multiplication and addition
of f and `, which are continuous functions from item (i) of
Assumption 2, thus it follows that Jγ,d is also a continuous
function in x and u. Since item (ii) of Assumption 2 holds,
Jγ,d is level-bounded in u locally uniformly to x according
to Definition 1.16 in [21]. That is, for each x ∈ Rn and
a ∈ R≥0 there is a neighborhood X of x such that the set
{(x,u) : x ∈ X , Jγ,d(x,u) ≤ a} is bounded in Rn × Rm.
Finally, SA guarantees the existence of u∗∗∗γ,d(x), it follows
from item (i) of Assumption 2 that with a fixed sequence
u := u∗∗∗γ,d(x), Jγ,d(x̄,u) is continuous in x̄. Altogether, we
deduce from that Vγ,d is a continuous function by invoking
item (c) of Theorem 1.17 in [21].

6The corresponding step was omitted in the proof of Theorem 2 in [20].

D. Proof of Corollary 1

Let ∆ > 0, γ ∈ (γ∗, 1] and d ∈ (d∗,∞], x ∈ Rn be
such that σ(x) ≤ ∆ and v ∈ F ∗γ,d(x). Since Assumption 1
holds, we can apply the conclusions of Theorem 1. From item
(b) of Theorem 1, Yγ,d(v) − Yγ,d(x) ≤ 1

γ

(
− αW (σ(x)) +

Υ(Yγ,d(x), γ, d)
)
, where7 Υ(s, γ, d) = (1− γ)s + γdαV ◦

α−1
W ◦

(
I−αW ◦α−1

Y

γ

)(d)

(s) since αY = αY = αW . We use the
following strategy. First, we show that Yγ,d(v) − Yγ,d(x) ≤
−εYγ,d(x) holds for some ε > 0 when Yγ,d(x) ∈ [0, aY L]
due to (13). Then, we show that Yγ,d(v) − Yγ,d(x) ≤
− 1

2 α̃Y (Yγ,d(x)) holds for α̃Y = αW ◦ α−1
Y when Yγ,d(x) ∈

(aY L,αY (∆)] due to (14). To conclude, we combine the two
inequalities and we defer to the proof of Theorem 2.

We first derive properties based on the sublinear conditions
of Corollary 1. Since αV (s) ≤ āV · s and αW (s) ≤ āW · s for
s ∈ [0, L], αY (s) = αV (s)+αW (s) ≤ (āV + āW ) ·s = āY ·s.
Thus s = α−1

Y (αY (s)) ≤ α−1
Y (āY · s) for s ∈ [0, L] and, for

s′ = āY · s ∈ [0, āY L],

s′

āY
≤ α−1

Y (s′). (40)

Similarly, from aW · s ≤ αW (s) for s ∈ [0, L] and taking
s′ = αW (s) ∈ [0, αW (L)], we derive that

α−1
W (s′) ≤ s′

aW
. (41)

By composing both sides of (40) with αW , we obtain that
αW ( s

āY
) ≤ αW ◦ α−1

Y (s) for s ∈ [0, āY L], and since s
āY
∈

[0, L], aW s
āY
≤ αW ( s

āY
), thus

aW
āY
s ≤ αW ◦ α−1

Y (s). (42)

Therefore s− αW ◦ α−1
Y (s) ≤

(
1− aW

āY

)
s, and, for any s ∈

[0, āY L], (
s− αW ◦ α−1

Y (s)

γ

)
≤ γ−1

(
1− aW

āY

)
s. (43)

On the other hand, according to (13), 1 − γ∗ < aW
āY

, thus
1 − aW

āY
< γ∗. Since γ∗ < γ, 1 − aW

āY
< γ. With this

inequality, we derive from (43) that
(
s−αW ◦α−1

Y (s)

γ

)
≤ s

for any s ∈ [0, āY L]. Thus
(
s−αW ◦α−1

Y (s)

γ

)
∈ [0, āY L] for

s ∈ [0, āY L]. We can then apply the first inequality in (43)

iteratively and obtain
(

I−αW ◦α−1
Y

γ

)(d)

(s) ≤ γ−d
(

1− aW
āY

)d
s

for s ∈ [0, āY L]. Also from (43), γ∗ < γ and d > d∗, we have

that
(

1− aWāY
γ∗

)d∗
>

(
1− aWāY
γ∗

)d
> γ−d

(
1− aW

āY

)d
. Hence,

according to (12) and (43), for s ∈ [0, āY L],(
I− αW ◦ α−1

Y

γ

)(d)

(s) ≤ γ−d
(

1− aW
āY

)d
s ≤ αW (L).

(44)
Since (44) holds, we can invoke (41) and obtain for s ∈
[0, āY L]

α−1
W ◦

(
I−αW ◦α−1

Y

γ

)(d)

(s) ≤ γ−d

aW

(
1− aW

āY

)d
s. (45)

7The case when γ = 1 or d =∞ will be discussed later.
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Moreover, from (44), it follows that, for s ∈ [0, āY L],

α−1
W ◦

(
I−αW ◦α−1

Y

γ

)(d)

(s) ≤ α−1
W ◦ αW (L) = L. (46)

From (45) and (46), we conclude that γdαV ◦ α−1
W ◦(

I−αW ◦α−1
Y

γ

)(d)

(s) ≤ γdāV · α−1
W ◦

(
I−αW ◦α−1

Y

γ

)(d)

(s) ≤

γdāV
γ−d

aW

(
1− aW

āY

)d
s = āV

aW

(
1− aW

āY

)d
s for s ∈ [0, āY L]

holds. Therefore, for s ∈ [0, āY L],

Υ(s, γ, d) ≤ (1− γ)s+ āV
aW

(
1− aW

āY

)d
s. (47)

Note that (47) holds even for γ = 1 or d = ∞, indeed

Υ(s, 1, d) ≤ āV
aW

(
1− aW

āY

)d
s and Υ(s, γ,∞) = (1 − γ)s

for s ∈ [0, āY L].
Since −αW (σ(x)) ≤ −αW ◦ α−1

Y (Yγ,d(x)) holds from
item (i) of Theorem 1, for Yγ,d(x) ∈ [0, āY L] we derive
that −αW (σ(x)) ≤ −aWāY Yγ,d(x) from (42). Applying this
inequality and (47) to item (ii) of Theorem 1, we find

Yγ,d(v) − Yγ,d(x) ≤
−aWāY +(1−γ)+

āV
aW

(
1−aWāY

)d
γ Yγ,d(x). For

(γ∗, d∗) as defined in (13), and since γ ∈ (γ∗, 1] and d > d∗,
it follows

0 < 1− γ +
āV
aW

(
1− aW

āY

)d
<
aW
āY

. (48)

Consequently, there exist ε ∈
(

0, aWāY

)
such that

(
− aW

āY
+1−

γ + āV
aW

(
1− aW

āY

)d )
< − ε

γ < −ε. Finally, we conclude that
Yγ,d(v)− Yγ,d(x) ≤ −εYγ,d(x) for Yγ,d(x) ∈ [0, āY L] since
(13) holds.

For Yγ,d(x) ∈ (āY L,αY (∆)], the existence of γ∗ and d∗

such that (14) holds follows from the same arguments as
for the existence of γ∗ and d∗ such that (34) holds in the
proof of Theorem 2, with ∆̃ := αY (∆) and δ̃ := āY L. By
following the steps of the proof of Theorem 2 for (36) we
obtain that Yγ,d(v)−Yγ,d(x) < − 1

2 α̃Y (Yγ,d(x)) for Yγ,d(x) ∈
(āY L,αY (∆)].

We have found that Yγ,d(v) − Yγ,d(x) decreases for all
Yγ,d(x) ∈ (0, αY (∆)]. In particular, by −εYγ,d(x) for
Yγ,d(x) ∈ [0, āY L] and by − 1

2 α̃Y (Yγ,d(x)) for Yγ,d(x) ∈
(āY L,αY (∆)]. We conclude the proof by noting that Yγ,d(v)−
Yγ,d(x) ≤ −min

{
εI, 1

2 α̃Y
}

(Yγ,d(x)). The desired result is
then derived by following the final steps of Theorem 2.

E. Sketch of proof of Corollary 2

Let x ∈ Rn, v ∈ F ∗γ,d(x) and γ ∈ (γ∗, 1], d ∈ (d∗,∞].
Since Assumption 1 holds with Corollary 1 conditions with
L =∞, we can use the sublinear developments of Corollary 1
everywhere, that is, for all x ∈ Rn. In particular, we have
shown that given (13), there exists ε ∈

(
0, aWāY

)
such that

Yγ,d(v)− Yγ,d(x) ≤ −εYγ,d(x) holds for Yγ,d(x) ∈ [0, āY L].
Similarly in Corollary 2 case, we derive from (15) that
Yγ,d(v)− Yγ,d(x) ≤ −εYγ,d(x) holds for any Yγ,d(x) ∈ R≥0.
We now proceed with the same argument as the proof of
Corollary 2 in [20]. Let x ∈ Rn and denote φ(k, x) be
a corresponding solution to (5) at time k ∈ Z≥0, it holds

that Yγ,d(φ(k, x)) ≤ (1 − ε)kYγ,d(x). Since Yγ,d(x) ≥
αW (σ(x)) ≥ aWσ(x) and Yγ,d(x) ≤ αY (σ(x)) ≤ āY σ(x),
we conclude that Corollary 2 holds with K = āY

aW
= āV +āW

aW
and λ = − ln(1− ε).

F. Proof of Lemma 2

Item (ii) of Lemma 2 is derived immediately by substitu-
tion, since d̄ =

ln(āV (āV +āW )/a2
W )

− ln(1− aW
āV +āW

)
and d[8] := āV (āV +āW )

a2
W

.

Item (i) of Lemma 2 follows since γ̄
γ[20]

< 1 implies
(āV +āW−aW )(āV +aW )

(āV +āW )āV
=

ā2
V +āV āW+aW āW−a2

W

ā2
V +āV āW

< 1, which
in turn implies aW āW < a2

W . Item (i) of Lemma 2 holds since
aW > 0 by assumption of Corollary 2.

G. Proof of Theorem 3

Let x ∈ Rn, γ ∈ (0, 1], d ∈ Z>0. According to SA,
the input sequence [u∗0, . . . , u

∗
d−1, u

∗
d] = u∗∗∗γ,d(x) exists and

Jγ,d(x,u
∗∗∗
γ,d(x)) = Vγ,d(x). The lower bounds on Vγ,∞(x)

and V1,d(x) in (16a) and (16b), respectively, follow from the
definitions of Vγ,∞(x) and V1,d(x) in (3). The other inequalities
are proved in the following.

Define φ∗k := φ(k, x,u∗∗∗γ,d(x)|k) a solution to (1) at time
k ∈ {0, . . . , d}, initialized at x, and define `∗k := `(φ∗k, u

∗
k)

the corresponding stage cost at time k. To prove the sec-
ond inequality in equation (16a), consider the infinite se-
quence û := [u∗0, . . . , u

∗
d−1,u

∗∗∗
γ,∞(φ∗d)], where u∗∗∗γ,∞ exist

according to SA. By definition of Vγ,∞(x) and Vγ,d(x),
Vγ,∞(x) ≤ Jγ,∞(x, û) = Jγ,d−1(x, [u∗0, . . . , u

∗
d−1]) +

γdJγ,∞(φ∗d,u
∗∗∗
γ,∞(φ∗d)) ≤ Vγ,d(x) + γdVγ,∞(φ∗d). According

to item (i) of Assumption 1, Vγ,∞(φ∗d) ≤ αV (σ(φ∗d)). To bound
σ(φ∗d), we invoke (79) in the appendix. Hence, Vγ,∞(φ∗d) ≤

αV ◦α−1
Y ◦

(
I−αY ◦α−1

Y

γ

)(d)

(Yγ,d(x)). By invoking item (i) of
Theorem 1, Yγ,d(x) ≤ αY (σ(x)) and we obtain the second
inequality of (16a).

For (16b), consider the finite sequence u∗∗∗γ,d(x). Note that

V1,d(x) ≤ J1,d(x,u
∗∗∗
γ,d(x)) =

d∑
k=0

`∗k (49)

By applying Bellman principle to Vγ,d(x), as done in the
proof of Theorem 5, it follows that Vγ,d−k(φ∗k) = `∗k +
γVγ,d−(k+1)(φ

∗
k+1) for k ∈ {0, . . . , d− 1} and Vγ,0(φ∗d) = `∗d.

By summation we have
∑d
k=0 Vγ,d−k(φ∗k) =

∑d
k=0 `

∗
k +

γ
∑d−1
k=0 Vγ,d−(k+1)(φ

∗
k+1)Vγ,d(φ

∗
0) +

∑d
k=1 Vγ,d−k(φ∗k) =∑d

k=0 `
∗
k + γ

∑d
k=1 Vγ,d−k(φ∗k). Since φ∗0 = x,

Vγ,d(x) + (1− γ)

d∑
k=1

Vγ,d−k(φ∗k) =

d∑
k=0

`∗k. (50)

Therefore, in view of (49), V1,d(x) ≤ Vγ,d(x) + (1 −
γ)
∑d
k=1 Vγ,d−k(φ∗k). The proof is completed by noting that

Vγ,d−k(φ∗k) ≤ αV (σ(φ∗k)) ≤ vγ,k(x) := αV ◦ α−1
Y ◦(

I−αY ◦α−1
Y

γ

)(k)

◦ αY (σ(x)), which holds in view of (79).
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H. Proof of Lemma 3

Let ∆ > 0, x ∈ {z ∈ Rn : σ(z) ≤ ∆} and ∆̃ =
αY (∆). When γ = 1, it follows that v1,d(x) = αV ◦ α−1

Y ◦(
I− αY ◦ α−1

Y

)(d) ◦ αY (σ(x)), which can be made as small
as desired by noting that (I− αY ◦ α−1

Y )(d) is decreasing in
d, as explained in the proof of Theorem 1. Thus v1,d(x)→ 0
when d→∞.

When γ ∈ [1− αY (∆)
αY (∆) , 1), it follows that (1− γ)αY (∆) ≤

αY (∆), thus (1 − γ)∆̃ ≤ αY ◦ α−1
Y (∆̃) by definition of

∆̃, and hence ∆̃−αY ◦α−1
Y (∆̃)

γ ≤ ∆̃. We have obtained that(
I−αY ◦α−1

Y

γ

)(d)

(∆̃) ≤ ∆̃. On the other hand, since σ(x) ≤ ∆

and I−αY ◦α−1
Y

γ , αY ∈ K∞ as assumed without loss of gen-
erality in Remark 2 and Theorem 1 respectively, we have
I−αY ◦α−1

Y

γ (αY (σ(x))) ≤ I−αY ◦α−1
Y

γ (∆) ≤ ∆̃. Finally, we have
that γdvγ,d(x) ≤ γdαV ◦ αY (∆̃), thus γdvγ,d(x) → 0 when
d→∞.

Since γdvγ,d(x)→ 0 for γ ∈ [1− αY (∆)
αY (∆) , 1] when d→∞,

it follows from the sandwich rule and (16a) that Vγ,d(x) +
γdvγ,d(x)→ Vγ,∞(x) when d→∞.

I. Proof of Corollary 3

Let d ∈ Z>0, γ ∈ (0, 1] and x ∈ Rn. Item
(i) of Corollary 3 follows immediately by application
of (16a) and of the conditions of Corollary 2. Indeed,

since vd(x) = αV ◦ α−1
Y ◦

(
I−αY ◦α−1

Y

γ

)(d)

◦ αY (σ(x)),

we have vd(x) ≤ γ−d āV (āV +āW )
aW

(
1− aW

āV +āW

)d
σ(x).

Thus Vγ,∞ ≤ Vγ,d(x) + γdvd(x) ≤ Vγ,d(x) +
āV (āV +āW )

aW

(
1− aW

āV +āW

)d
σ(x) = Vγ,d(x) + v̂d(x), which

is the desired result.
Assume now that γ ∈ (1 − aW

āV +āW
, 1]. Since γ ∈ (0, 1],

Theorem 3 holds. Recall the definition of vk from (16b) and

notice that vk(x) ≤ γ−k āV (āV +āW )
aW

(
1− aW

āV +āW

)k
σ(x),

in view of the definition of vk and by direct
application of the conditions of Corollary 2. Thus,
d∑
k=1

vk(x)≤σ(x) āV (āV +āW )
aW

d∑
k=1

γ−k
(

1− aW
āV +āW

)k
=

σ(x) āV (āV +āW )
aW

∞∑
k=1

γ−k
(

1− aW
āV +āW

)k
. Since 1− aW

āV +āW
<γ,

∞∑
k=1

γ−k
(

1− aW
āV +āW

)k
=

γ−1
(

1− aW
āV +āW

)
1−γ−1

(
1− aW

āV +āW

)=
(

1− aW
āV +āW

)
āV +āW

aW−(1−γ)(āV +āW ) . Finally, (1−γ)
d∑
k=1

vk(x)≤Sv(x) where

Sv(x):=(1−γ)σ(x) āV (āV +āW )
aW

(
1− aW

āV +āW

)
āV +āW

aW−(1−γ)(āV +āW ) .
Thus V1,d ≤ Vγ,d(x) + Sv(x) and the proof is completed.

J. Proof of Theorem 4

The proof consist in building a Lyapunov function for the
near-optimal cost, and to conclude by following similar steps
as in the proof of Theorem 2, by suitable selection of ε. Let
x ∈ Rn, (γ, d) ∈ P and ε > 0. Per Assumption 3, there exists
a near-optimal input sequence [û0, û1, . . . , ûd] = ûγ,d(x), such

that v̂ = f(x, û0) and V̂γ,d(x) = Jγ,d(x, ûγ,d(x)). Let k ∈
{0, . . . , d} and define φ̂k := φ(k, x, ûγ,d(x)|k) the solution to
(1) with input ûγ,d(x) initialized at x, ˆ̀

k := `(φ̂k, ûk) and
V̂γ,d−k(φk) := Jγ,d−k(φ̂k, [ûk, . . . , ûd]).

By definition of V̂γ,d and ˆ̀
k, it follows from (2) that

V̂γ,d−k(φ̂k) = ˆ̀
k +γV̂γ,d−(k+1)(φ̂k+1) for k ∈ {0, . . . , d−1}

and V̂γ,0(φ̂d) = ˆ̀
d. Invoking item (ii) of Assumption 1, we

derive W (φ̂k) ≥ −ˆ̀
k + αW (σ(φ̂k)) +W (φ̂k+1). Thus, given

Ŷγ,d−k(φ̂k) := V̂γ,d−k(φ̂k)+W (φ̂k), we derive Ŷγ,d−k(φ̂k) ≥
αW (σ(φ̂k)) + γŶγ,d−(k+1)(φ̂k+1) + (1 − γ)W (φ̂k+1). For
k = d, we derive similarly that Ŷγ,0(φ̂d) ≥ αW (σ(φ̂d)), thus
for any k ∈ {0, . . . , d}, it follows that

Ŷγ,d−k(φ̂k) ≥ αW (σ(φ̂k)). (51)

On the other hand, from Ŷγ,d−k(φ̂k) ≥ αW (σ(φ̂k)) +

γŶγ,d−(k+1)(φ̂k+1) + (1−γ)W (φ̂k+1) for k ∈ {0, . . . , d−1}
established above, we deduce Ŷγ,d−k(φ̂k) ≥ αW (σ(φ̂k)) +

γŶγ,d−(k+1)(φ̂k+1) since W ≥ 0, which implies

Ŷγ,d−(k+1)(φ̂k+1) ≤ Ŷγ,d−k(φ̂k)− αW (σ(φ̂k))

γ
. (52)

We now derive an upper-bound for Ŷγ,d−k(φ̂k) in terms of
Ŷγ,d(x). Note that Ŷγ,d−(k+1)(φ̂k+1) ≤ Ŷγ,d−k(φ̂k)

γ holds. In
view of Assumptions 1 and 3, we have that V̂γ,d−k(φ̂k) +
W (φ̂k) ≤ αV (σ(φ̂k)) + η(ε, γ, d) + αW (σ(φ̂k)), that is,
Ŷγ,d−k(φ̂k) ≤ η(ε, γ, d) + αY (σ(φ̂k)), where αY :=
αV + αW . When αY (σ(φ̂k)) ≥ η(ε, γ, d), it follows that
α−1
Y (

Ŷγ,d−k(φ̂k)
2 ) ≤ σ(φ̂k), which implies

α̃Y (Ŷγ,d−k(φ̂k)) ≤ αW (σ(φ̂k)), (53)

where α̃Y (s) := αW ◦ α−1
Y ( s2 ) for all s ≥ 0. When

αY (σ(φ̂k)) ≤ η(ε, γ, d), it follows that

Ŷγ,d−k(φ̂k) ≤ 2η(ε, γ, d). (54)

From (52), (53) and (54), we derive Ŷγ,d−(k+1)(φk+1) ≤
max

{(
I−α̃Y
γ

)
(Ŷγ,d−k(φ̂k)), 2η(ε,γ,d)

γ

}
. For the sake of con-

venience, we introduce parameter µ > 0 such that such that
2η(ε,γ,d)

γ ≤ µ and that 1 − α̃Y (µ)
µ ≤ γ. Parameter µ can be

introduced without loss of generality, since the first condition
2η(ε,γ,d)

γ ≤ µ can be always verified by taking ε small, and
the second is verified by taking γ close to 1. Moreover, we
will require later in the proof analogous conditions on γ and
η to guarantee stability. Thus,

Ŷγ,d−(k+1)(φk+1) ≤ max

{(
I− α̃Y
γ

)
(Ŷγ,d−k(φ̂k)), µ

}
.

(55)
We now show that I−α̃Y

γ ∈ K∞. Indeed, as explained
in Remark 2, we can assume without loss of generality
that I − αW ◦ (αV + αW ) ∈ K∞. Thus 2I − αW ◦
α−1
Y ∈ K∞, therefore I − αW ◦ α−1

Y ◦ I
2 = I − α̃Y ∈

K∞ and we conclude I−α̃Y
γ ∈ K∞. Hence, with one it-

eration of (55) to itself, we obtain Ŷγ,d−(k+2)(φ̂k+2) ≤
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max

{(
I−α̃Y
γ

)(2)

(Ŷγ,d−k(φ̂k)),
(

I−α̃Y
γ

)
(µ) , µ

}
. By succes-

sive iterations of (55) and noting that
(

I−α̃Y
γ

)
(µ) ≤ µ because

1− α̃Y (µ)
µ ≤ γ, we obtain

Ŷγ,0(φ̂d) ≤ max

{(
I−α̃Y
γ

)(d)

(Ŷγ,d(x)), µ

}
. (56)

Since (51) holds,

σ(φ̂d) ≤ σd(Ŷγ,d(x)), (57)

where σd(Ŷγ,d(x)):= max

{
α−1
W ◦

(
I−α̃Y
γ

)(d)

(Ŷγ,d(x)), α−1
W (µ)

}
.

Note that for s ∈ [0, µ],

σd(s) = α−1
W (µ) . (58)

Consider now cost V̂γ,d(v̂) = V̂γ,d(f(x, û0)), where û0 is
the first input of the near-optimal sequence ûγ,d(x). From
Assumption 3, V̂γ,d(v̂) ≤ Vγ,d(v̂) + η(ε, γ, d). Let u :=
[û1, û2, . . . , ûd−1, ū1] where ū1 := u∗γ,1(φ̂d) is the optimal
sequence of inputs of length 2 for state φ̂d with cost Vγ,1(φ̂d)
and ûi are the inputs of the near-optimal sequence. It follows
from the optimality of Vγ,d(v̂) that Vγ,d(v̂) ≤ Jγ,d(v̂,u) ≤
Jγ,d−2(v̂, [û1, . . . , ûd−1]) + γd−1Vγ,1(φ̂d). Therefore, accord-
ing to Assumption 3,

V̂γ,d(v̂)

≤ Jγ,d−2(v̂, [û1, . . . , ûd−1]) + γd−1Vγ,1(φ̂d) + η(ε, γ, d).
(59)

On the other hand, we have V̂γ,d(x) =
Jγ,d(x, [û0, û1, . . . , ûd]) = ˆ̀

0 + γJγ,d−1(v̂, [û1, . . . , ûd]),
which implies Jγ,d−2(v̂, [û1, . . . , ûd−1]) ≤
Jγ,d−1(v̂, [û1, . . . , ûd]) =

V̂γ,d(x)−ˆ̀
0

γ . In view of (59),

V̂γ,d(v̂)− V̂γ,d(x)

≤ Jγ,d−2(v̂, [û1, . . . , ûd−1]) + γd−1Vγ,1(φ̂d) + η(ε, γ, d)

− V̂γ,d(x)

≤ V̂γ,d(x)− ˆ̀
0

γ
− V̂γ,d(x) + γd−1Vγ,1(φ̂d) + η(ε, γ, d)

≤ −
ˆ̀
0 + (1− γ)V̂γ,d(x) + γdVγ,1(φ̂d) + γη(ε, γ, d)

γ
. (60)

From item (ii) of Assumption 1 and following the steps in the
proof of Theorem 1 to obtain (30), we have

W (v̂)−W (x) ≤ 1

γ

(
−αW (σ(x))+ ˆ̀

0 +(1−γ)W (x)
)
. (61)

Summing equations (60) and (61), we have

Ŷγ,d(v̂)− Ŷγ,d(x)

≤ −αW (σ(x)) + (1− γ)Ŷγ,d(x) + γdVγ,1(φ̂d) + γη(ε, γ, d)

γ
.

(62)

Recall that Ŷγ,d(x) ≤ αY (σ(x)) + η(ε, γ, d). Again, we
distinguish two cases. First, consider αY (σ(x)) ≥ η(ε, γ, d).
From (53), α̃Y (Ŷγ,d(x)) = αW ◦ α−1

Y (
Ŷγ,d(x)

2 ) ≤ αW (σ(x)),

thus−αW (σ(x)) ≤ −α̃Y (Ŷγ,d(x)). On the other hand, from (i)
from Assumption 1 and (57), Vγ,1(φ̂d) ≤ αV (σ(φ̂d)) ≤ αV ◦
σd(Ŷγ,d(x)). Moreover, γη(ε, γ, d) ≤ γ2

2 µ since η(ε, γ, d) ≤
γ
2µ. Altogether, in view of (62),

Ŷγ,d(v̂)− Ŷγ,d(x) ≤ −α̃Y + Υ̂(·, µ, γ, d)

γ

(
Ŷγ,d(x)

)
(63)

holds with Υ̂(s, µ, γ, d) :=
(
(1− γ)I + γdαV ◦ σd

)
(s)+ γ2

2 µ.
Second, when αY (σ(x)) ≤ η(ε, γ, d), it follows that Ŷγ,d(x) ≤
2η(ε, γ, d) in view of Ŷγ,d(x) ≤ αY (σ(x)) + η(ε, γ, d).
From item (i) of Assumption 1 and (57), Vγ,1(σ(φ̂d)) ≤
αV ◦ σd(Ŷγ,d(x)). Since Ŷγ,d(x) ≤ 2η(ε, γ, d) ≤ µ, it follows
from (58) that Vγ,1(σ(φ̂d)) ≤ αV ◦ α−1

W (µ). In view of (62)
and −αW (σ(x)) ≤ 0, we derive Ŷγ,d(v̂) ≤ 2η(ε, γ, d) +
(1−γ)2η(ε,γ,d)+γdαV ◦α−1

W (µ)+γη(ε,γ,d)

γ , that is Ŷγ,d(v̂) ≤ (1+ γ
2 )

2η(ε,γ,d)
γ + γd−1αV ◦ α−1

W (µ). Therefore,

Ŷγ,d(v̂) ≤ ν(µ, γ, d) (64)

holds with ν(µ, γ, d) := (1 + γ
2 )µ+ γd−1αV ◦ α−1

W (µ). Note
that ν(·, γ, d) is class K∞, and both ν(µ, ·, d) and ν(µ, γ, ·)
can be made as small as desired by reducing µ.

Let δ,∆ > 0 and8 ∆̃ := 2αY (∆), δ̃ := (I− 1
2 α̃Y )−1◦αW (δ).

There exists (γ∗, d∗) ∈ (0, 1)×Z≥0 such that for any (γ, d) ∈
Pγ∗,d∗ , there exists ε∗ > 0 such that for any ε ∈ [0, ε∗) the
following holds

∀ s ∈ [δ̃, ∆̃], Υ̂(s, µ, γ, d) ≤
(

1− γ

2

)
α̃Y (s) (65)

ν(µ, γ, d) ≤ (I− 1
2 α̃Y )(δ̃) (66)

1− α̃Y (µ)

µ
≤ γ (67)

2η(ε, γ, d)

γ
≤ µ, (68)

with ν(µ, γ, d) =
1+ γ

2

γ µ + γd−1αV ◦ α−1
W (µ),

Υ̂(s, µ, γ, d) =
(
(1− γ)I + γdαV ◦ σd

)
(s) + γ2

2 µ, and

σd(s) = max

{
α−1
W ◦

(
I−α̃Y
γ

)(d)

(s), α−1
W (µ)

}
. The

satisfaction of (65)-(68) is not so easy to see, we therefore
prove it step by step. First, note that the right hand side of
(65) is bounded below by 1

2 α̃Y (δ̃). On the left side, we have
Υ̂(s, µ, γ, d) ≤ (1 − γ)∆̃ + αV ◦ σd(∆̃) + µ

2 =: ψ(µ, γ, d).
By the same arguments given in the proof of Theorem
2, we have that ψ(µ, γ, d) → αV ◦ α−1

W (µ) + µ
2 as

(γ, d) → (1,∞), which in turn can be made as small
as desired by taking µ small. Thus, like in the proof
of Theorem 2, there exist a triple (µ∗(65), γ

∗
(65), d

∗
(65))

such that for any (µ, γ, d) ∈ [0, µ∗(65)) × Pγ∗(65),d
∗

(65) ,
Υ̂(s, µ, γ, d) ≤ ψ(µ, γ, d) ≤ 1

2 α̃Y (δ̃) and thus (65)
holds. Regarding (66), note that its right hand side is
positive since δ̃ > 0 and8 I − α̃Y

2 ∈ K∞. We have that

ν(µ, γ, d) ≤ 1+
γ
2

γ µ+αV ◦α−1
W (µ) =: ψ′(γ, µ). Since

1+
γ
2

γ is
decreasing in γ, we have that ψ′ is decreasing in γ and can be

8As seen in the proof of Theorem 2, I− α̃Y ∈ K∞ implies I− α̃Y
2
∈ K∞,

thus δ̃ is well defined.
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made as small as desired by taking µ small. Thus in the same
vein as for ψ for (65), there exists a triple (µ∗(66), γ

∗
(66), d

∗
(66))

such that for any (µ, γ, d) ∈ [0, µ∗(66)) × Pγ∗(66),d
∗

(66) ,
ν(µ, γ, d) ≤ φ′(µ, γ) ≤ (I − 1

2 α̃Y )(δ̃) and thus (66) holds.
For (67), note that 1 − α̃Y (µ)

µ < 1 for µ > 0. Thus, for
each µ > 0, there exist γ∗(67) ∈ (0, 1) such that for any
γ ∈ (γ∗(67), 1], (67) holds. For (68), since η(·, γ, d) ∈ K∞,
η(ε, γ, d) can be made as small as desired by reducing ε in
function of (µ, γ, d). Furthermore, for any (µ, γ, d), there
exists ε∗(68) such that for any ε ∈ [0, ε∗(68)), 2η(ε,γ,d)

γ ≤ µ.
In sum, we select (µ∗, γ∗, d∗) ∈ (0,min{µ(65), µ(66)}) ×
Pmax{γ∗(65),γ

∗
(66),γ

∗
(67)},max{d∗(65),d

∗
(66)} and for each

(γ, d) ∈ Pγ∗,d∗ , we take ε∗ ∈ (0, ε∗(68)). In that way
(65)-(67) are satisfied. This choice of (γ∗, d∗) is able
to verify the properties mentioned beforehand. That is,
inequalities (65)-(67) hold for µ∗ and for every ε ≤ ε∗(68)
chosen in function of (γ, d) ∈ Pγ∗,d∗ , so is (68). u We
now follow similar lines as in the proof of Theorem 2 to
prove (20). When αY (σ(x)) ≥ η(ε, γ, d), (63) holds. In this
case, in view of (65), Ŷγ,d(v̂) − Ŷγ,d(x) ≤ − 1

2 α̃Y (Ŷγ,d(x))

if Ŷγ,d ∈ [δ̃, ∆̃], and if Ŷγ,d(x) ∈ [0, δ̃), we derive9

Ŷγ,d(v̂) ≤ δ̃ − 1
2 α̃Y (δ̃) ≤ (I − 1

2 α̃Y )(δ̃). For
αY (σ(x)) ≤ η(ε, γ, d), (64) holds. Hence, in view of
(66), Ŷγ,d(v̂) ≤ ν(µ, γ, d) ≤ (I − 1

2 α̃Y )(δ̃). By the same
line of reasoning as in the proof of Theorem 2, we deduce
that there exist β̂ ∈ KL, which is uniform in γ and d, such
that any solution φ̂ to (19) initialized at σ(x) ≤ ∆ and any
k ∈ Z≥0,

Ŷγ,d(φ̂(k, x)) ≤ max{β̂(Ŷγ,d(x), k), (I− 1
2 α̃Y )(δ̃)}. (69)

Finally, recall αY (σ(x)) ≤ Ŷγ,d(x) ≤ αY (σ(x))+η(ε, γ, d) ≤
2 max{αY (σ(x)), η(ε, γ, d)} and δ̃ =

(
I− 1

2 α̃Y
)−1 ◦ αY (δ).

Then, since β̂ ∈ KL, we derive

σ(φ̂(k, x)) ≤ max{α−1
Y

(
β̂(2αY (σ(x)), k)

)
,

α−1
Y

(
β̂(2η(ε∗, γ, d), 0)

)
, δ}. (70)

Let ε∗ ∈ [0, ε∗(68)) be such that α−1
Y

(
β̂(2η(ε∗, γ, d), 0)

)
≤ δ,

we obtain

σ(φ̂(k, x)) ≤ max{α−1
Y

(
β̂(2αY (σ(x)), k)

)
, δ}. (71)

Thus (20) holds with β(s, k) = α−1
Y

(
β̂(2αY (s), k)

)
.

We now prove the last part of Theorem 4. We have already
noted the existence of a pair (γ∗, d∗) such that inequalities
(65)-(67) hold for any γ ∈ (γ∗, 1] and d ∈ (d∗,∞] for fixed µ.
Assume, without loss of generality, that 2

η(ε∗(68)),γ
∗,d∗)

γ∗ ≤ µ.
It follows that η(ε, γ, d) ≤ η(ε∗(68)), γ

∗, d∗), as η is assumed
here to be non-decreasing in γ and d, and is of class K∞
in ε. Since γ∗ ≤ γ, 1

γ ≤
1
γ∗ . Hence, 2η(ε,γ,d)

γ ≤ µ.
Therefore, the remaining inequality (68) is verified for any

9This holds with the same reasoning as (37) in the proof of Theorem 2, with
the following rectification. In (37), we have utilized Υ(·, γ, d)−(1−γ)I ∈ K∞
to show that γI− αW ◦ α−1

Y + Υ(·, γ, d) ∈ K∞. Here, it suffices to note
that Υ̂(·, µ, γ, d)− (1− γ)I is non-decreasing, henceforth by following the
same steps as in (37) the mentioned bound is found.

(ε, γ, d) ∈ [0, ε∗) × Pγ∗,d∗ and (70) holds. All that is left to
find is ε∗ ≤ ε∗(68) such that α−1

Y

(
β̂(2(ε∗, γ∗, d∗), 0)

)
≤ δ,

hence α−1
Y

(
β̂(2η(ε, γ, d), 0)

)
≤ δ and the proof is complete.

K. Proof of Lemma 4

Let s ∈ R≥0, γ ∈ (0, 1], d ∈ Z>0∪{∞}, δ,∆ > 0 and recall
the definitions for Υ, Υ̂ and respective α̃Y from the proofs
of Theorem 1 and Theorem 4. It follows that Υ(s, γ, d) =

(1 − γ)s + γdαV ◦ α−1
W

(
I−αW ◦(αV +αW )−1

γ

)(d)

(s) ≤ (1 −

γ)s+γdαV ◦α−1
W

(
I−αW ◦(αV +αW )−1◦ I

2

γ

)(d)

(s). On the other

hand, for any µ ≥ 0, we have that
(

I−αW ◦(αV +αW )−1◦ I
2

γ

)(d)

≤

max

{(
I−αW ◦(αV +αW )−1◦ I

2

γ

)(d)

, µ

}
. Therefore Υ(s, γ, d) ≤

Υ̂(s, µ, γ, d)− µ2

2 ≤ Υ̂(s, µ, γ, d). On the other hand, we have
α̃Y = αW ◦α−1

Y in Theorem 1 and α̃Y = αW ◦α−1
Y ◦

I
2 . Clearly,

when (65) holds for pair (δ,∆) for all (µ, γ, d) ∈ [0, µ∗) ×
(γ∗, 1]× (d∗,∞], it follows that Υ(s, γ, d) ≤ Υ̂(s, µ, γ, d, ) ≤(
1− γ

2

)
αW ◦α−1

Y ◦
I
2 ≤

(
1− γ

2

)
αW ◦α−1

Y (s), thus equation
(34) holds for all (γ, d) ∈ (γ∗, 1] × (d∗,∞] and the proof is
complete.

L. Proof of Lemma 4

The proof immediately follows from Assumption 3 and
item (i) of Theorem 3, which holds from Assumption 1.
In particular V̂γ,d(x) − η(ε, γ, d) ≤ Vγ,d(x) ≤ Vγ,∞(x) ≤
Vγ,d(x) + γdvγ,d(x) ≤ V̂γ,d(x) + γdvγ,d(x).

VIII. CONCLUSION

We have analyzed the stability of nonlinear discrete-time
systems controlled by a sequence of inputs that minimizes
a discounted finite-horizon cost and is implemented in a
receding-horizon fashion. In general, uniform semiglobal
practical stability is ensured under suitable stabilizability and de-
tectability conditions. Under additional assumptions, semiglobal
asymptotic stability and uniform global exponential stability
properties are guaranteed. The Lyapunov function used to prove
stability is shown to be continuous under extra assumptions,
hence endowing stability with some nominal robustness. We
compared our results with previous works of the literature
on undiscounted finite-horizon and discounted infinite-horizon
optimal control, respectively. We have identified conditions
under which the bounds we provide on discount factor and
on horizon length are less conservative than those in [20]
and [8]. Furthermore, we provide new relationships between
the optimal value functions of the discounted, undiscounted,
infinite-horizon, finite-horizon costs, which differ from those
typically found in the (approximate) dynamic programming
literature. Finally, we have analyzed stability when the available
inputs are only near-optimal, for which an illustrative example
was provided.
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IX. APPENDIX

The next Lyapunov properties are used in the proof of
Theorem 1.

Theorem 5: Suppose Assumption 1 is verified. Functions
αY , αY , αY ∈ K∞ from Theorem 1 are such that, for any γ ∈
(0, 1], d ∈ Z>0, k ∈ {0, . . . , d}, and Yγ,d−k := Vγ,d−k + W
is such that the following holds.

(i) For any x ∈ Rn,

αY (σ(x)) ≤ Yγ,d−k(x) ≤ αY (σ(x)). (72)

(ii) For any x ∈ Rn,

Yγ,d−(k+1)(φ
∗
k+1)− Yγ,d−k(φ∗k)

≤ 1

γ

(
− αY (σ(φ∗k)) + (1− γ)Yγ,d−k(φ∗k)

)
,

(73)

where φ∗k+1 ∈ F ∗γ,d−k(φ∗k) and φ∗0 = x. �

Proof of Theorem 5: Let γ ∈ (0, 1], d ∈ Z>0, k ∈
{0, . . . , d}, x ∈ Rn. There exists [u∗0, u

∗
1, . . . , u

∗
d] = u∗∗∗γ,d(x)

where u∗∗∗γ,d(x) is an optimal input sequence for system (1)
with cost (2) according to SA.

Define `∗0 = `(φ∗0, u
∗
0) and let u′ be the sequence of

length d such that u∗∗∗γ,d(x) = [u∗0,u
′]. From the defini-

tion of Vγ,d in (3) and cost (2), Vγ,d(x) = Jγ,0(x, u∗0) +
γJγ,d−1(f(x, u∗0),u′) = `∗0 + γJγ,d−1(φ∗1,u

′) By definition
of Vγ,d(x) and u′, Vγ,d−1(φ∗1) = Jγ,d−1(f(x, u∗0),u′). Hence,
Vγ,d(x) = `∗0 +γVγ,d−1(φ∗1). Let `∗k = `(φ∗k, u

∗
k). Remark that,

when k < d and by iteration,

Vγ,d−k(φ∗k)

= Jγ,0(φ∗k, u
∗
k)

+ γJγ,d−(k+1)(f(φ∗k, u
∗
k),u∗∗∗γ,d−(k+1)(f(φ∗k, u

∗
k)))

= `∗k + γmin
u
Jγ,d−(k+1)(φ

∗
k+1,u)

= `∗k + γVγ,d−(k+1)(φ
∗
k+1). (74)

Notice that for k = d, Vγ,0(φ∗d) = `∗d since Jγ,0(x, u) =
`(x, u). Since stage cost ` is nonnegative and item (i) of
Assumption 1 holds for any d, it follows from (74)

`∗k ≤ Vγ,d−k(φ∗k) ≤ αV (σ(φ∗k)). (75)

Furthermore, using Bellman equation,

Vγ,d−(k+1)(φ
∗
k+1)− Vγ,d−k(φ∗k)

≤ Vγ,d−(k+1)(φ
∗
k+1)− `∗k − γVγ,d−(k+1)(φ

∗
k+1)

≤ −`∗k + (1− γ)Vγ,d−(k+1)(φ
∗
k+1). (76)

It follows from (74) that Vγ,d−(k+1)(φ
∗
k+1) = 1

γ (Vγ,d−k(φ∗k)−
`∗k), hence

Vγ,d−(k+1)(φ
∗
k+1)− Vγ,d−k(φ∗k)

≤ 1

γ

(
− `∗k + (1− γ)Vγ,d−k(φ∗k)

)
. (77)

On the other hand, in view of item (ii) of Assumption 1,
W (f(φ∗k, u

∗
k)) −W (φ∗k) ≤ −αW (σ(φ∗k)) + `(φ∗k, u

∗
k). Since

φ∗k+1 = f(φ∗k, u
∗
k) and `∗k = `(φ∗k, u

∗
k), W (φ∗k+1)−W (φ∗k) ≤

−αW (σ(φ∗k)) + `∗k. Furthermore, since γ ≤ 1, γW (φ∗k+1) −

W (φ∗k) ≤ −αW (σ(φ∗k)) + `∗k, hence W (φ∗k+1) −W (φ∗k) −
1−γ
γ W (φ∗k) ≤ −αW (σ(φ∗k))

γ +
`∗k
γ as in (30). Therefore,

W (φ∗k+1)−W (φ∗k)

≤ 1

γ

(
− αW (σ(φ∗k)) + `∗k + (1− γ)W (x)

)
(78)

We define Yγ,k := Vγ,k +W . In view of (77) and (78),

Yγ,d−(k+1)(φ
∗
k+1)− Yγ,d−k(φ∗k)

≤ 1

γ

(
− `∗k + (1− γ)Vγ,d−k(φ∗k)− αW (σ(φ∗k)) + `∗k

+ (1− γ)W (φ∗k)
)

=
1

γ

(
− αW (σ(φ∗k)) + (1− γ)Yγ,d−k(φ∗k)

)
. (79)

Thus item (ii) is verified with αY = αW ∈ K∞.
On the other hand, item (i) of Theorem 5 follows by noting

that item (i) of Theorem 1 holds for any x ∈ Rn, d ∈ Z>0

and γ ∈ (0, 1].
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